Ayuda
Ir al contenido

Dialnet


Mechanical and thermal characterization of a novel nanocomposite thermal interface material for electronic packaging

  • Autores: Shuangxi Sun, Si Chen, Xin Luo, Yifeng Fu, Lilei Ye, Johan Liu
  • Localización: Microelectronics reliability, ISSN 0026-2714, Nº. 56, 2016, págs. 129-135
  • Idioma: inglés
  • Enlaces
  • Resumen
    • AbstracThis paper presents a novel nanocomposite thermal interface material (Nano-TIM) consisting of a silver coated polyimide network and the indium matrix. One of the potential applications of this Nano-TIM is for heat dissipation in integrated circuits and electronic packaging. The shear strength of the Nano-TIM was investigated with DAGE-4000PSY shear tester. The shear strength of Nano-TIM is 4.5 MPa, which is 15% higher than that of the pure indium thermal interface material. The microstructure of cross-section and fracture surface was studied using Scanning Electron Microscopy (SEM). SEM pictures show a uniform polymer fiber distribution and solid interface between silver coated fibers and indium matrix. The thermal fatigue resistance of the Nano-TIM was evaluated by monitoring the variation of thermal interface resistance during the thermal cycling test (− 40 to 125 °C). The thermal interface resistance was measured with a commercial xenon flash instrument after 100, 200, 300, 400, 500, and 1000 temperature cycles. The results of thermal cycling test show that Nano-TIM presented consistent reliability performance with pure indium. Furthermore, the cooling effect of Nano-TIM was demonstrated through measuring the power chip temperature in the die attached structure by using an Infrared Camera. In the test, the Nano-TIM shows a comparable cooling effect to pure indium TIM for die attach applications in electronics packaging.


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus

Opciones de compartir

Opciones de entorno