Ayuda
Ir al contenido

Dialnet


Novel features of neurodegeneration in the inner retina of early diabetic rats

    1. [1] Semmelweis University

      Semmelweis University

      Hungría

  • Localización: Histology and histopathology: cellular and molecular biology, ISSN-e 1699-5848, ISSN 0213-3911, Vol. 30, Nº. 8, 2015, págs. 971-985
  • Idioma: inglés
  • Enlaces
  • Resumen
    • The literature indicates that in diabetes retinal dysfunctions related to neural retinal alterations exist prior to clinically detectable vasculopathy. In a previous report, a detailed description about the alteration of the outer retina was given, where diabetic degeneration preceded apoptotic loss of cells (Enzsöly et al., 2014). Here, we investigated the histopathology of the inner retina in early diabetes using the same specimens. We examined rat retinas with immunohisto-chemistry and Western blotting, 12 weeks after streptozotocin induction of diabetes. Glial reactivity was observed in all diabetic retinal specimens; however, it was not detectable all over the retina, but appeared in randomly arranged patches, with little or no glia activation in between. Similarly, immunoreactivity of parvalbumin (staining mostly AII amacrine cells) was also decreased only in some regions. We propose that these focal changes appear prior to affecting the whole retina and overt loss of cells. In contrast to these, most other markers used (calretinin, recoverin, tyrosin hydroxylase anti-Brn-3a and also calbindin in the optic part of the retina) did not show any major alterations in the intensity of immunoreactivity or in the number of stained elements. Interestingly, under diabetic conditions, the labeling pattern of PKC-a and calbindin in the ciliary retina showed a clear resemblance to the pattern described during development. This observation is in line with our previous study, reporting an increase in the number of dual cones, coexpressing two photopigments, which is another common feature with developing retinas. These data may indicate a previously uninvestigated regenerative capacity in diabetic retina.


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus

Opciones de compartir

Opciones de entorno