Ayuda
Ir al contenido

Dialnet


Dermal Damage Promoted by Repeated Low-Level UV-A1 Exposure Despite Tanning Response in Human Skin

  • Autores: Frank Wang, Noah R. Smith, Bao Anh Patrick Tran, Sewon Kang, John J. Voorhees, Gary J. Fisher
  • Localización: JAMA Dermatology, ISSN 2168-6068, Vol. 150, Nº. 4, 2014, págs. 401-406
  • Idioma: inglés
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • Importance Solar UV irradiation causes photoaging, characterized by fragmentation and reduced production of type I collagen fibrils that provide strength to skin. Exposure to UV-B irradiation (280-320 nm) causes these changes by inducing matrix metalloproteinase 1 and suppressing type I collagen synthesis. The role of UV-A irradiation (320-400 nm) in promoting similar molecular alterations is less clear yet important to consider because it is 10 to 100 times more abundant in natural sunlight than UV-B irradiation and penetrates deeper into the dermis than UV-B irradiation. Most (approximately 75%) of solar UV-A irradiation is composed of UV-A1 irradiation (340-400 nm), which is also the primary component of tanning beds.

      Objective To evaluate the effects of low levels of UV-A1 irradiation, as might be encountered in daily life, on expression of matrix metalloproteinase 1 and type I procollagen (the precursor of type I collagen).

      Design, Setting, and Participants In vivo biochemical analyses were conducted after UV-A1 irradiation of normal human skin at an academic referral center. Participants included 22 healthy individuals without skin disease.

      Main Outcomes and Measures Skin pigmentation was measured by a color meter (chromometer) under the L* variable (luminescence), which ranges from 0 (black) to 100 (white). Gene expression in skin samples was assessed by real-time polymerase chain reaction.

      Results Lightly pigmented human skin (L* >65) was exposed up to 4 times (1 exposure/d) to UV-A1 irradiation at a low dose (20 J/cm2), mimicking UV-A levels from strong sun exposure lasting approximately 2 hours. A single exposure to low-dose UV-A1 irradiation darkened skin slightly and did not alter matrix metalloproteinase 1 or type I procollagen gene expression. With repeated low-dose UV-A1 irradiation, skin darkened incrementally with each exposure. Despite this darkening, 2 or more exposures to low-dose UV-A1 irradiation significantly induced matrix metalloproteinase 1 gene expression, which increased progressively with successive exposures. Repeated UV-A1 exposures did not suppress type I procollagen expression.

      Conclusions and Relevance A limited number of low-dose UV-A1 exposures, as commonly experienced in daily life, potentially promotes photoaging by affecting breakdown, rather than synthesis, of collagen. Progressive skin darkening in response to repeated low-dose UV-A1 exposures in lightly pigmented individuals does not prevent UV-A1-induced collagenolytic changes. Therefore, for optimal protection against skin damage, sunscreen formulations should filter all UV wavelengths, including UV-A1 irradiation.


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus

Opciones de compartir

Opciones de entorno