Ayuda
Ir al contenido

Dialnet


Resumen de Aerosol particles in the Mexican East Pacific. Part II: numerical simulations of the impact of enhanced CCN on precipitation development

Diana Rosa Pozo, Graciela B. Raga, Daniel Baumgardner, Julio César Marín

  • español

    Varios estudios han investigado el efecto de emisiones antrópicas en el desarrollo y evolución de diferentes tipos de nubes; sin embargo, todavía no se conoce realmente la magnitud de este efecto, particularmente para el caso de nubes de fase mixta de gran desarrollo vertical. En este estudio se introdujeron cambios en la parametrización del proceso de autoconversión en el modelo ARPS (Advanced Regional Prediction System) para responder esta pregunta. Las simulaciones fueron inicializadas con distribuciones de gotas de nube medidas con el avión C-130 que voló a 600-800 km de la costa en la zona de convergencia intertropical durante el experimento EPIC (East Pacific Investigations of Climate). Se analizaron dos casos distintos, uno con la influencia de aerosoles antropogénicos y otro sin dicha influencia. Las simulaciones indica que el aumento de la concentración de núcleos de condensación de nube (CCN, por sus siglas en inglés) produce un retraso en la formación de precipitación y una disminución de ésta en superficie, como resultado de la inhibición del proceso de autoconversión de agua de nube en agua de precipitación y la posterior demora en la formación de granizo. Además, el granizo se forma en los niveles altos de la nube en el caso contaminado. El proceso más importante en la producción de precipitación en ambos casos es el derretimiento de granizo. La disminución en la masa de granizo que cae por debajo del nivel de congelación en el caso contaminado conduce a una disminución de la precipitación en superficie. Las simulaciones no mostraron cambios apreciables en la altura y velocidades verticales máximas de las nubes debido a cambios en la concentración inicial de CCN, lo cual sugiere poca sensibilidad en la dinámica de las nubes. La simulación del caso control usando la parametrización antigua produce mucha más precipitación que los casos limpio y contaminado. Además, el caso limpio muestra una mejor correspondencia con observaciones que el caso control. Se sugiere usar el nuevo esquema de autoconversión para simular el desarrollo de nubes convectivas en océanos tropicales.

  • English

    A number of studies have explored the effect of anthropogenic emissions on the development and evolution of precipitation in different types of clouds; however, the magnitude of the effect is still not clear, particularly for the case of deep, mixed-phase clouds. In this study, changes in the parameterization of the autoconversion process were introduced in the Advanced Regional Prediction System (ARPS) model to further evaluate this question. The simulations were initialized with cloud droplet distributions measured from an instrumented C-130 aircraft flying 600-800 km offshore in the intertropical convergence zone during the East Pacific Investigations of Climate (EPIC) project. Two contrasting cases were selected, one with and the other without the influence of anthropogenic aerosols. The simulations indicate that the increased cloud condensation nuclei (CCN) concentrations lead to a delay in the formation of rain and to a decrease in precipitation that reaches the surface as a result of the inhibition of the autoconversion of cloud water to rain water and the subsequent delay in the formation of hail. In addition, hail forms at higher levels in the cloud for the case of anthropogenic CCN. The most important process in the production of rain water in both cases is the melting of hail. A decrease in the mass of hail that falls below the freezing level in the polluted case, leads to a decrease in the resulting precipitation at the surface. Changes in the initial concentration of CCN do not appear to influence the storm strength in terms of updrafts and cloud top height, suggesting little sensitivity of the cloud dynamics. A control case simulation using the old microphysics scheme produces much more precipitation than either of the clean and polluted cases. In addition, the clean case with the modified parameterization shows a better agreement to observations than the control case. It is suggested to use the new scheme to simulate deep convective development over tropical maritime regions.


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus