Ye Hu, Rex Yuxing Du, Sina Damangir
Unlike sales data, data on intermediate stages of the purchase funnel (e.g., how many consumers have searched for information about a product before purchase) are much more difficult to acquire. Consequently, most advertising response models have focused directly on sales and ignored other purchase funnel activities. The authors demonstrate, in the context of the U.S. automotive market, how consumer online search volume data from Google Trends can be combined with sales data to decompose advertising's overall impact into two underlying components: its impacts on (1) generating consumer interest in prepurchase information search and (2) converting that interest into sales. The authors show that this decompositional approach, implemented through a novel state-space model that simultaneously examines sales and search volumes, offers important advantages over a benchmark model that considers sales data alone. First, the approach improves goodness-of-fit, both in and out of sample. Second, it improves diagnosticity by distinguishing advertising effectiveness in interest generation from its effectiveness in interest conversion. Third, the authors find that overall advertising elasticity can be biased if researchers consider only sales data.
© 2001-2024 Fundación Dialnet · Todos los derechos reservados