Ayuda
Ir al contenido

Dialnet


Resumen de Structural and electronic properties of RuN/GaN superlattices:: a first-principles study

César Ortega López, Rafael Julián González Hernández, Jairo Arbey Rodríguez Martínez

  • In this work, we investigate the structural and electronic properties of RuN/GaN superlattices, using first-principles calculations within density functional theory (DFT) and generalized gradient approximation (GGA). We have employed he full potential linearized augmented plane waves (FP-LAPW) method as implemented in the WIEN2k code. The 1 x 1, 1 x 2, 1 x 3 and 1 x 4 RuN/GaN superlattices are studied in the wurtzite phase, which is the most stable structure of the GaN. In order to determine the best parameters, we have optimized the total energy as a function of (i) the unit cell volume, (ii) the c/a ratio and (iii) the z-coordinate of Ga and Ru atoms. Lattices constant, bulk moduli, cohesive and formation energies are reported as a function of the period for each RuN/GaN superlattices, and trends are discussed. On the oher hand, a study of the density of states show that a the superlattices present a metallic behavior. The results suggests that the RuN/GaN superlattices can be used as compounds for the fabricatrion of semiconductor-metal-semiconductor or semiconductor-metal devices.


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus