The aim of this study was to investigate the effects of concurrent training on endurance capacity and dynamic neuromuscular economy in elderly men. Twenty-three healthy men (65 ± 4 years) were divided into 3 groups: concurrent (CG, n = 8), strength (SG, n = 8), and aerobic training group (EG, n = 7). Each group trained 3 times a week for 12 weeks, strength training, aerobic training, or both types of training in the same session. The maximum aerobic workload (Wmax) and peak oxygen uptake ([latin capital V with dot above]O2peak) of the subjects were evaluated on a cycle ergometer before and after the training period. Moreover, during the maximal test, muscle activation was measured at each intensity by means of electromyographic signals from the vastus lateralis (VL), rectus femoris (RF), biceps femoris long head, and gastrocnemius lateralis to determine the dynamic neuromuscular economy. After training, significant increases in [latin capital V with dot above]O2peak and Wmax were only found in the CG and EG (p < 0.05), with no difference between groups. Moreover, there was a significant decrease in myoelectric activity of the RF muscle at 50 (EG), 75 and 100 W (EG and CG) and in the VL for the 3 groups at 100 W (p < 0.05). No change was seen in the electrical signal from the lateral gastrocnemius muscle and biceps femoris. The results suggest specificity in adaptations investigated in elderly subjects, because the most marked changes in the neuromuscular economy occurred in the aerobically trained groups.
© 2001-2024 Fundación Dialnet · Todos los derechos reservados