In this paper, we consider a finite-horizon stochastic mixed-integer program involving dynamic decisions under a constraint on the overall performance or reliability of the system. We formulate this problem as a multistage (dynamic) chance-constrained program, whose deterministic equivalent is a large-scale mixed-integer program. We study the structure of the formulation and develop a branch-and-cut method for its solution. We illustrate the efficacy of the proposed model and method on a dynamic inventory control problem with stochastic demand in which a specific service level must be met over the entire planning horizon. We compare our dynamic model with a static chance-constrained model, a dynamic risk-averse optimization model, a robust optimization model, and a pseudo-dynamic approach and show that significant cost savings can be achieved at high service levels using our model.
© 2001-2024 Fundación Dialnet · Todos los derechos reservados