Ron Caplan, Ricardo Carretero González
Wedescribe and test an easy-to-implement two-step high-order compact (2SHOC) scheme for the Laplacian operator and its implementation into an explicit finite-difference scheme for simulating the nonlinear Schrödinger equation (NLSE). Our method relies on a compact �double-differencing� which is shown to be computationally equivalent to standard fourthorder non-compact schemes. Through numerical simulations of the NLSE using fourthorder Runge�Kutta, we confirm that our scheme shows the desired fourth-order accuracy.
A computation and storage requirement comparison is made between the 2SHOC scheme and the non-compact equivalent scheme for both the Laplacian operator alone, as well as when implemented in the NLSE simulations. Stability bounds are also shown in order to get maximum efficiency out of the method. We conclude that the modest increase in storage and computation of the 2SHOC schemes is well worth the advantages of having the schemes compact, and their ease of implementation makes their use very useful for practical implementations.
© 2001-2024 Fundación Dialnet · Todos los derechos reservados