Ayuda
Ir al contenido

Dialnet


Strong convergence and stability of implicit numerical methods for stochastic differential equations with non-globally Lipschitz continuous coefficients

  • Autores: Xuerong Mao, Lukasz Szpruch
  • Localización: Journal of computational and applied mathematics, ISSN 0377-0427, Vol. 238, Nº 1, 2013, págs. 14-28
  • Idioma: inglés
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • We are interested in the strong convergence and almost sure stability of Euler�Maruyama (EM) type approximations to the solutions of stochastic differential equations (SDEs) with non-linear and non-Lipschitzian coefficients. Motivation comes from finance and biology where many widely applied models do not satisfy the standard assumptions required for the strong convergence. In addition we examine the globally almost surely asymptotic stability in this non-linear setting for EM type schemes. In particular, we present a stochastic counterpart of the discrete LaSalle principle from which we deduce stability properties for numerical methods.


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus

Opciones de compartir

Opciones de entorno