Se realiza un análisis empírico sobre el nivel óptimo de desagregación sectorial y la mejor estrategia de modelización econométrica para la predicción de la inflación en México. Se comparan diferentes estrategias de modelización desagregada basadas en: 1) modelos ARIMA univariantes, 2) metodologías de datos de panel, 3) modelos de corrección del equilibrio y 4) modelos de factores dinámicos. Se encuentra que la consideración de desagregación sectorial es útil a la hora de predecir la tasa de inflación agregada en México. Es más, la predicción de la inflación basada en modelos con datos de panel, modelos de corrección del equilibrio y factores dinámicos superan a simples estrategias extrapolativas basadas en modelos ARIMA univariantes.
This article is an empirical analysis on the optimal level of disaggregation by sectors and the best econometric strategy in order to forecast Mexican inflation. We compare different disaggregate modeling strategies based on: .1) univariate ARIMA models, 2) panel data methodology, 3) vector error correction models, and 4) dynamic common factor models. It is found that disaggregation by sectors is useful in order to forecast the Mexican inflation rate. Moreover, inflation forecasts based on panel data, vector correction models and dynamic factor models improves those obtained from simple extrapolative devices based on ARIMA models.
© 2001-2026 Fundación Dialnet · Todos los derechos reservados