Ayuda
Ir al contenido

Dialnet


Sublinear Higson corona and Lipschitz extensions

  • Autores: Matija Cencelj, Jerzy Dydak, Ales Vavpetic
  • Localización: Houston journal of mathematics, ISSN 0362-1588, Vol. 37, Nº 4, 2011, págs. 1307-1322
  • Idioma: inglés
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • We show that the dimension of the sublinear Higson corona of a metric space X is the smallest non-negative integer m with the following property: Any norm-preserving asymptotically Lipschitz function from a closed subset A of X to the Euclidean space of dimension m+1 extends to a norm-preserving asymptotically Lipschitz function from X to the Euclidean space of dimension m+1. As an application we obtain another proof of the following result of Dranishnikov and Smith: Let X be a cocompact proper metric space, which is M-connected for some M, and has the asymptotic Assouad-Nagata dimension finite. Then this dimension equals the dimension of the sublinear Higson corona of X


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus

Opciones de compartir

Opciones de entorno