Andrés Pantoja, Eduardo Mojica Nava, Nicanor Quijano
Las técnicas de descomposición en sumas de cuadrados (SOS) permiten emplear métodos numéricos para probar la positividad de funciones polinómicas multivariables resolviendo problemas de programación semidefinida. Teniendo en cuenta que generalmente es difícil encontrar funciones de Lyapunov para realizar análisis de estabilidad en sistemas no lineales, con el uso de técnicas SOS se utiliza una herramienta computacional para resolver este problema, planteando las condiciones de estabilidad como un problema SOS y obteniendo la solución con un toolbox de Matlab. Para mostrar el uso de esta herramienta se presentan ejemplos simples de los conceptos de SOS, análisis de estabilidad para sistemas no lineales polinómicos, racionales, con incertidumbre en los parámetros y de sistemas conmutados con una aproximación polinomial. Con dicha aproximación se encuentran funciones adecuadas para demostrar estabilidad asintótica para estos sistemas.
The sum of squares (SOS) decomposition technique allows numerical methods such as semidefinite programming to be used for proving the positivity of multivariable polynomial functions. It is well known that it is not an easy task to find Lyapunov functions for stability analysis of nonlinear systems.
An algorithmic tool is used in this work for solving this problem.
This approach is presented as SOS programming and solutions were obtained with a Matlab toolbox. Simple examples of SOS concepts, stability analysis for nonlinear polynomial and rational systems with uncertainties in parameters are presented to show the use of this tool. Besides these approaches, an alternative stability analysis for switched systems using a polynomial approach is also presented.
© 2001-2024 Fundación Dialnet · Todos los derechos reservados