Ayuda
Ir al contenido

Dialnet


Lagrangean decomposition for large-scale two-stage stochastic mixed 0-1 problems

  • Autores: Laureano Fernando Escudero Bueno, María Araceli Garín Martín, Gloria Pérez Sainz de Rozas, Aitziber Unzueta Inchaurbe
  • Localización: Documentos de Trabajo BILTOKI, ISSN-e 1134-8984, Nº. 7, 2010
  • Idioma: inglés
  • Enlaces
  • Resumen
    • In this paper we study solution methods for solving the dual problem corresponding to the Lagrangean Decomposition of two stage stochastic mixed 0-1 models. We represent the two stage stochastic mixed 0-1 problem by a splitting variable representation of the deterministic equivalent model, where 0-1 and continuous variables appear at any stage.

      Lagrangean Decomposition is proposed for satisfying both the integrality constraints for the 0-1 variables and the non-anticipativity constraints. We compare the performance of four iterative algorithms based on dual Lagrangean Decomposition schemes, as the Subgradient method, the Volume algorithm, the Progressive Hedging algorithm and the Dynamic Constrained Cutting Plane scheme. We test the conditions and properties of convergence for medium and large-scale dimension stochastic problems. Computational results are reported.


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus

Opciones de compartir

Opciones de entorno