Ayuda
Ir al contenido

Dialnet


Partial Castelnuovo�Mumford regularities of sums and intersections of powers of monomial ideals

  • Autores: Lê Tuân Hoa, Tran Nam Trung
  • Localización: Mathematical proceedings of the Cambridge Philosophical Society, ISSN 0305-0041, Vol. 149, Nº 2, 2010, págs. 229-246
  • Idioma: inglés
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • Let I, I11,. . ., I1q1,. . ., Ip1,. . ., Ipqp be monomial ideals of a polynomial ring R = K[X1,. . ., Xr] and Ln = I+njIn1j + · · · + njIpjn. It is shown that the ai-invariant ai(R/Ln) is asymptotically a quasi-linear function of n for all n » 0, and the limit limn?8ad(R/Ln)/n exists, where d = dim(R/L1). A similar result holds if I11,. . ., I1q1,. . ., Ip1,. . ., Ipqp are replaced by their integral closures. Moreover all limits also exist.

      As a consequence, it is shown that there are integers p > 0 and 0 = e = d = dim R/I such that reg(In) = pn + e for all n » 0 and pn = reg(In) = pn + d for all n > 0 and that the asymptotic behavior of the Castelnuovo�Mumford regularity of ordinary symbolic powers of a square-free monomial ideal is very close to a linear function.


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus

Opciones de compartir

Opciones de entorno