Ayuda
Ir al contenido

Dialnet


A note on twisted discrete singular Radon transforms

  • Autores: Lillian B. Pierce
  • Localización: Mathematical research letters, ISSN 1073-2780, Vol. 17, Nº 4, 2010, págs. 701-720
  • Idioma: inglés
  • Enlaces
  • Resumen
    • In this paper we consider three types of discrete operators stemming from singular Radon transforms. We first extend an $\ell^p$ result for translation invariant discrete singular Radon transforms to a class of twisted operators including an additional oscillatory component, via a simple method of descent argument. Second, we note an $\ell^2$ bound for quasi-translation invariant discrete twisted Radon transforms. Finally, we extend an existing $\ell^2$ bound for a closely related non-translation invariant discrete oscillatory integral operator with singular kernel to an $\ell^p$ bound for all $1< p< \infty$. This requires an intricate induction argument involving layers of decompositions of the operator according to the Diophantine properties of the coefficients of its polynomial phase function.


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus

Opciones de compartir

Opciones de entorno