Jacek Tabor, Józef Tabor, Marek Zoldak
Let X be a real topological vector space, let D be a subset of X and let ® : X ! [0;1) be an even function locally bounded at zero.
A function f : D ! R is called (®; t)-preconvex (where t 2 (0; 1) is ¯xed), if f(tx + (1 ¡ t)y) · tf (x) + (1 ¡ t)f(y) + ®(x ¡ y) for x; y 2 D such that [x; y] ½ D:
We prove the Bernstein{Doetsch type theorem for (®; t)-preconvex functions.
© 2001-2024 Fundación Dialnet · Todos los derechos reservados