Ayuda
Ir al contenido

Dialnet


Resumen de Quasiconformal geometry of fractals

Mario Bonk

  • Many questions in analysis and geometry lead to problems of quasiconformal geometry on non-smooth or fractal spaces. For example, there is a close relation of this subject to the problem of characterizing fundamental groups of hyperbolic 3-orbifolds or to Thurston�s characterization of rational functions with finite post-critical set.

    In recent years, the classical theory of quasiconformal maps between Euclidean spaces has been successfully extended to more general settings and powerful tools have become available.

    Fractal 2-spheres or Sierpi´nski carpets are typical spaces for which this deeper understanding of their quasiconformal geometry is particularly relevant and interesting.


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus