Ayuda
Ir al contenido

Dialnet


On the complexity of counting components of algebraic varieties

  • Autores: Peter Bürgisser, Peter Scheiblechner
  • Localización: Journal of symbolic computation, ISSN 0747-7171, Vol. 44, Nº 9, 2009, págs. 1114-1136
  • Idioma: inglés
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • We give a uniform method for the two problems of counting the connected and irreducible components of complex algebraic varieties. Our algorithms are purely algebraic, i.e., they use only the field structure of . They work in parallel polynomial time, i.e., they can be implemented by algebraic circuits of polynomial depth. The design of our algorithms relies on the concept of algebraic differential forms. A further important building block is an algorithm of Szántó computing a variant of characteristic sets. Furthermore, we use these methods to obtain a parallel polynomial time algorithm for computing the Hilbert polynomial of a projective variety which is arithmetically Cohen-Macaulay.


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus

Opciones de compartir

Opciones de entorno