If $X$ is a compact topological space and $E$ is a locally convex space, we prove that the sets $\{\phi\in C(X,E): \phi(X)\subset T\},T$ running through the set of bornivorous barrels in $E$, form a base of bornivorous barrels in $C(X,E)$ if and only if $E'_\beta$ has property $(P)$ of Pietsch
© 2001-2024 Fundación Dialnet · Todos los derechos reservados