Ayuda
Ir al contenido

Dialnet


Plus petit commun multiple des termes consécutifs d'une suite récurrente linéaire

  • Autores: Jean Paul Bézivin
  • Localización: Collectanea mathematica, ISSN 0010-0757, Vol. 40, Fasc. 1, 1989, págs. 1-11
  • Idioma: francés
  • Títulos paralelos:
    • Mínimo común múltiplo de los términos consecutivos de una sucesión recurrente lineal
    • Least common multiple of consecutive terms of a linear recurrent sequence
  • Enlaces
  • Resumen
    • Let $a,b$ be coprime rational integers, and $u(n)$ the binary recurrent sequence $u(n+2)=au(n+1)+bu(n)$, with the initial values $u(0)=0$ and $u(1)=1$. It is proved in [4] that the quotient of the logarithm of the product of the $u(k), 1\leq k\leq n$, and of the logarithm of the least common multiple of the $ u(k), 1\leq k\leq n$, converges to $\pi^2/6$ when $n$ goes to infinity. In this paper, we generalize this result to other recurrent sequences. As an example, fot the binary sequence above with initial values $u(0)=2$ and $u(1)=a$, the limit is $\pi^2/8$.


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus

Opciones de compartir

Opciones de entorno