Ayuda
Ir al contenido

Dialnet


Effects of a Ten-Second Maximum Voluntary Contraction on Regulatory Myosin Light-Chain Phosphorylation and Dynamic Performance Measures

  • Autores: J. Chadwick Smith, Andrew C. Fry
  • Localización: Journal of strength and conditioning research: the research journal of the NSCA, ISSN 1064-8011, Vol. 21, Nº. 1, 2007, págs. 73-76
  • Idioma: inglés
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • Smith, J.C., and A.C. Fry. Effects of a ten-second maximum voluntary contraction on regulatory myosin light-chain phosphorylation and dynamic performance measures. J. Strength Cond. Res. 21(1):73-76. 2007.-The purpose of this investigation was to evaluate the role of an elevated regulatory myosin light-chain (RLC) phosphorylation on subsequent postactivation potentiation induced by a 10-second maximum voluntary contraction (MVC). With the use of a repeated measures design, data were collected from 11 recreationally active men who performed an explosive knee extension exercise with a load of 70% of their 1 repetition maximum. Muscle biopsies of their vastus lateralis were taken pre- and post-MVC. Seven subjects had elevated RLC phosphorylation (positive responders) and 4 had a decrease in RLC phosphorylation (negative responders). Percent change of force, velocity, and power measures did not differ between the 2 groups. Our results suggest that recreationally active men will not benefit from the effects of postactivation potentiation during performance with a 7-minute recovery period. Furthermore, we suggest that training status, strength, and skill level might be key determining factors for the positive benefits of postactivation potentiation during performance.


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus

Opciones de compartir

Opciones de entorno