Ayuda
Ir al contenido

Dialnet


Sentido do infinito segundo D. Hilbert: matemática, lógica e filosofía

  • Autores: Ramiro Délio Borges de Meneses
  • Localización: Sapientia, ISSN 0036-4703, Vol. 60, Fasc. 218, 2005, págs. 297-318
  • Idioma: español
  • Enlaces
  • Resumen
    • A través de crítica penetrante, Weierstrass criou um fundamento firme para a Análise Matemática. Esclareceu, entre outros, os conceitos de mínimo, de fung'áo e de derivada, removeu os defeitos que ainda afectavam o cálculo infinitesimal, depurou-o de todas as nogóes confusas sobre os infinitésimos e, dessa forma, dominou definitivamente as dificuldades nascidas desse conceito. Gratas aos métodos de inferencia, fundados sobre o conceito de número irracional e, mais geralmente, sobre a nogáo de limite, boje reinam na Análise um acordo e uma certeza totais. E, a despeito das mais audazes e mais variadas técnicas de passagem ao limite, obtém-se a concordancia dos resultados nas questóes mais complexas, concernentes á teoria das equagóes diferenciais e integrais. Náo obstante, a fundagáo do cálculo infinitesimal por Weierstrass ainda náo encerrou a discussáo acerca dos fundamentos da Análise. Todavia o significado de infinito em Matemática ainda náo foi inteiramente esclarecido. Na verdade, o infinitamente pequeno e o infinitamente grande sáo excluidos da Análise, segundo Weierstrass, na medida em que as proposigóes que lhes dizem respeito sáo reduzidas a relagóes entre grandezas finitas. Porém, o infinito comparece nas sucessóes numéricas infinitas que definem os números reais sendo apreendido como totalidade presente, acabada e autónoma.


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus

Opciones de compartir

Opciones de entorno