Ayuda
Ir al contenido

Dialnet


Some inverse spectral results for semi-classical Schr\"odinger operators

  • Autores: Victor Guillemin, Alejandro Uribe
  • Localización: Mathematical research letters, ISSN 1073-2780, Vol. 14, Nº 4, 2007, págs. 623-632
  • Idioma: inglés
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • We show that the Birkhoff normal form of a classical Hamiltonian $H(x,\xi) = \norm{\xi}^2+V(x)$ at a non-degenerate minimum $x_0$ of the potential determines the Taylor series of the potential at $x_0$, provided the eigenvalues of the Hessian are linearly independent over $\bbQ$ and $V$ satisfies a symmetry condition near $x_0$. As a consequence, if $x_0$ is the unique global minimum of $V$, the low-lying eigenvalues of the semi-classical Schr\"odinger operator, $-\h^2\Delta + V(x)$, determine the Taylor series of the potential at $x_0$.


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus

Opciones de compartir

Opciones de entorno