We propose a version of the volume conjecture that would relate a certain limit of the colored Jones polynomials of a knot to the volume function defined by a representation of the fundamental group of the knot complement to the special linear group of degree two over complex numbers. We also confirm the conjecture for the figure-eight knot and torus knots. This version is different from S. Gukov's because of a choice of polarization
© 2001-2024 Fundación Dialnet · Todos los derechos reservados