Ayuda
Ir al contenido

Dialnet


Resumen de Nuclear diacylglycerol kinases: emerging downstream regulators in cell signaling networks

C. Evangelisti, R. Bortul, F. Falà, G. Tabellini, Kaoru Goto, Alberto M. Martelli

  • There exists an active lipid metabolism in the nucleus, which is regulated differentially from the lipid metabolism taking place elsewhere in the cell. Evidence has been accumulated that nuclear lipid metabolism is closely involved in a variety of cell responses, including proliferation, differentiation, and apoptosis. A fundamental lipid second messenger which is generated in the nucleus is diacylglycerol, that is mainly known for its role as an activator of some protein kinase C isoforms. Diacylglycerol kinases attenuate diacylglycerol signaling by converting this lipid to phosphatidic acid, which also has signaling functions. Ten mammalian diacylglycerol kinase isoforms have been cloned so far, and some of them are found also in the nucleus, either as resident proteins or after migration from cytoplasm in response to various agonists. Experiments using cultured cells have demonstrated that nuclear diacylglycerol kinases have prominent roles in cell cycle regulation and differentiation. In this review, the emerging roles played by diacylglycerol kinases in the nucleus, such as the control of G1/S phase transition, are discussed


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus