For any , a truncated symmetric a-stable process is a symmetric Lévy process in with a Lévy density given by for some constant c. In this paper we study the potential theory of truncated symmetric stable processes in detail. We prove a Harnack inequality for nonnegative harmonic functions of these processes. We also establish a boundary Harnack principle for nonnegative functions which are harmonic with respect to these processes in bounded convex domains. We give an example of a non-convex domain for which the boundary Harnack principle fails
© 2001-2024 Fundación Dialnet · Todos los derechos reservados