Motivated by recent work on the derivation of labelled transitions and bisimulation congruences from unlabelled reaction rules, we show how to address this problem in the DPO (double-pushout) approach to graph rewriting. Unlike the case with previous approaches, we consider graphs as objects, rather than arrows, of the category under consideration. This allows us to present a very simple way of deriving labelled transitions (called rewriting steps with borrowed context), which integrates smoothly with the DPO approach, has a very constructive nature and requires only a minimum of category theory. The core part of this paper is the proof that the bisimilarity based on graph rewriting with borrowed contexts is a congruence relation. We will also introduce some proof techniques and compare our approach with the derivation of labelled transitions via relative pushouts.
© 2001-2024 Fundación Dialnet · Todos los derechos reservados