Consider the divergence structure elliptic inequality $$ {\rm div}\{\boldsymbol A(x,u,Du)\} + B(x,u,Du) \ge 0 \leqno (1) $$ in a bounded domain $\Omega\subset \RR^n$. Here $$ \boldsymbol A(x,z,\boldsymbol \xi): \,K \to \RR^n; \qquad B(x,z,\boldsymbol \xi): \,K \to \RR, \qquad K = \Omega \times \RR^+ \times \RR^n, $$ and $\boldsymbol A$, $B$ satisfy the following conditions $$ \begin{aligned} \langle\boldsymbol A(\boldsymbol \xi) , \boldsymbol \xi \rangle \ge |\xi| - & c(x)z - a(x), \qquad |\boldsymbol A(x,z,\boldsymbol \xi)| \le \mbox{Const.},\\ & B(x,z,\boldsymbol \xi) \le b(x),\end{aligned} $$ for all $(x,z,\boldsymbol \xi)) \in K$, where $a(x)$, $b(x),\ c(x)$ are given non-negative functions. Our interest is in the validity of the maximum principle for solutions of (1), that is, the statement that {\it any solution which satisfies $u\le 0$ on $\partial\Omega$ must be a priori bounded above in $\Omega$.} This question arises, in particular, when one is interested in the mean curvature equation $$ {\rm div}\frac{Du}{\sqrt{1+|Du|^2}} = nH(x). $$
© 2001-2024 Fundación Dialnet · Todos los derechos reservados