The problem of surface water wave scattering by two thin nearly vertical barriers submerged in deep water from the same depth below the mean free surface and extending infinitely downwards is investigated here assuming linear theory, where configurations of the two barriers are described by the same shape function. By employing a simplified perturbational analysis together with appropriate applications of Green's integral theorem, first-order corrections to the reflection and transmission coefficients are obtained. As in the case of a single nearly vertical barrier, the first-order correction to the transmission coefficient is found to vanish identically, while the correction for the reflection coefficient is obtained in terms of a number of definite integrals involving the shape function describing the two barriers. The result for a single barrier is recovered when two barriers are merged into a single barrier.
© 2001-2024 Fundación Dialnet · Todos los derechos reservados