Ayuda
Ir al contenido

Dialnet


Uncountably many inequivalent Lipschitz homogeneous Cantor sets in R3

  • Autores: Dennis Garity, Dusan Repovs, Matjaz Zeljko
  • Localización: Pacific journal of mathematics, ISSN 0030-8730, Vol. 222, Nº 2, 2005, págs. 287-300
  • Idioma: inglés
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • General techniques are developed for constructing Lipschitz homogeneous wild Cantor sets in R3. These techniques, along with Kauffman¿s version of the Jones polynomial and previous results on Antoine Cantor sets, are used to construct uncountably many topologically inequivalent such wild Cantor sets in R3. This use of three-dimensional finite link invariants to detect distinctness among wild Cantor sets is unexpected. These Cantor sets have the same Antoine graphs and are Lipschitz homogeneous. As a corollary, there are uncountably many topologically inequivalent Cantor sets with the same Antoine graph.


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus

Opciones de compartir

Opciones de entorno