If $E$ is a closed subset of locally finite Hausdorff $(2n-2)$-measure on an $n$-dimensional complex manifold $\Omega$ and all the points of $E$ are nonremovable for a meromorphic mapping of $\Omega \setminus E$ into a compact Kähler manifold, then $E$ is a pure $(n-1)$-dimensional complex analytic subset of $\Omega$
© 2001-2024 Fundación Dialnet · Todos los derechos reservados