Ayuda
Ir al contenido

Dialnet


A Comparison of Visual and Mathematical Detection of the Electromyographic Threshold During Incremental Pedaling Exercise: A Pilot Study

  • Autores: François Hug, David Laplaud, Alejandro Lucía Mulas, Laurent Grelot
  • Localización: Journal of strength and conditioning research: the research journal of the NSCA, ISSN 1064-8011, Vol. 20, Nº. 3, 2006, págs. 704-708
  • Idioma: inglés
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • Hug, F., D. Laplaud, A. Lucia, and L. Grelot. A comparison of visual and mathematical detection of the electromyographic threshold during incremental pedaling exercise: A pilot study. J. Strength Cond. Res. 20(3):704-708. 2006.-During exhaustive incremental pedaling exercises, root mean square or amplitude of integrated electromyographic values exhibits a nonlinear increase, i.e., the so-called electromyographic threshold (EMGTh). As proposed by various authors, this EMGTh could be used as a complementary indicator of the aerobic-anaerobic transition in physiological evaluations. However, most of these studies used visual detection for the EMGTh and to date no previous study has shown the reliability of this type of EMGTh detection. We aimed to compare a visual and a mathematical method for EMGTh detection in each of 8 lower limb muscles during incremental cycling exercise. Our results showed an overestimation in the number of cases in which EMGTh was detected when using visual inspection (n = 45) compared with the mathematical method (n = 32). However, no significant differences were observed between the 2 methods concerning the power output at which EMGTh occurred. These results suggest that EMGTh should be mathematically detected. In this context, coaches can easily perform such measurements in order to evaluate the impact of their training programs on the neuromuscular adaptations of their athletes. For example, an automatic mathematical detection of EMGTh could be performed during a pedaling exercise in order to detect neuromuscular fatigue. Furthermore, this index could be used during test or training sessions performed either in a lab or in ecological situations. Moreover, the use of EMGTh to predict ventilatory threshold occurrence could be an interesting tool for trainers who cannot use the very expensive devices needed to analyze respiratory gas exchanges


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus

Opciones de compartir

Opciones de entorno