Ayuda
Ir al contenido

Dialnet


Estimates in Besov spaces for transpor and transportdiffusion equations with almost Lipschitz coefficients

  • Autores: R. Danchin
  • Localización: Revista matemática iberoamericana, ISSN 0213-2230, Vol. 21, Nº 3, 2005, págs. 863-888
  • Idioma: inglés
  • Títulos paralelos:
    • Estimaciones en espacios de Besov para ecuaciones de transporte y transporte-difusión con coeficientes casi Lipschitz.
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • This paper aims at giving an overview of estimates in general Besov spaces for the Cauchy problem on t = 0 related to the vector field ?t + v·Ñ. The emphasis is on the conservation or loss of regularity for the initial data.

      When Ñu belongs to L1(0,T; L?) (plus some convenient conditions depending on the functional space considered for the data), the initial regularity is preserved. On the other hand, if Ñv is slightly less regular (e.g. Ñv belogs to some limit space for which the embedding in L? fails), the regularity may coarsen with time. Different scenarios are possible going from linear to arbitrary small loss of regularity. This latter result will be used in a forthcoming paper to prove global well-posedness for two-dimensional incompressible density-dependent viscous fluids (see [11]).

      Besides, our techniques enable us to get estimates uniformly in v ? 0 when adding a diffusion term -v?u to the transport equation.


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus

Opciones de compartir

Opciones de entorno