We consider a finite buffer batch service queueing system with multiple vacations wherein the input process is Markovian arrival process (MAP). The server leaves for a vacation as soon as the system empties and is allowed to take repeated (multiple) vacations. The service- and vacation- times are arbitrarily distributed. We obtain the queue length distributions at service completion, vacation termination, departure, arbitrary and pre-arrival epochs. Finally, some performance measures such as loss probability, average queue lengths are discussed. Computational procedure has been given when the service- and vacation- time distributions are of phase type (PH-distribution).
© 2001-2024 Fundación Dialnet · Todos los derechos reservados