Ayuda
Ir al contenido

Dialnet


Sharp edge-homotopy on spatial graphs

  • Autores: Ryo Nikkuni
  • Localización: Revista matemática complutense, ISSN-e 1988-2807, ISSN 1139-1138, Vol. 18, Nº 1, 2005, págs. 181-207
  • Idioma: inglés
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • A sharp-move is known as an unknotting operation for knots. A self sharp-move is a sharp-move on a spatial graph where all strings in the move belong to the same spatial edge. We say that two spatial embeddings of a graph are sharp edge-homotopic if they are transformed into each of liar by self sharp-moves and ambient isofopies. We investigate how is f he sharp edge-homotopy strong and classify all spatial that a curves completely up to sharp edge-homotopy. Moreover we mention a relationship between sharp edge-homotopy and delta edge (rasp. vertex)-homotopy on spatial graphs.


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus

Opciones de compartir

Opciones de entorno