Serge Ballestra, J. Gastaud, J. J. López
The Chernobyl accident which occurred on 26 April 1986 resulted in relatively high levels of radioactive fallout over the major part of Europe. Air filter and precipitation samples enabled us to follow the contamination from the accident. In addition contamination was also monitored in selected environmental samples such as seaweeds, sea water, sediment, soil, suspended matter and biological material from the Mediterranean.All samples were counted on Ge(Li) or Ge(HP) detectors to determine the type and quantity of gamma emitting radionuclides and plutonium, americium and curium isotopes were separated and measured using radiochemical techniques and alpha counting.Increased atmospheric radioactivity from the Chernobyl accident was first detected by observing increased activity levels on air filters taken on April 30, 1986, with maximum activities occurring during 1-3 May. Most of the radionuclides initially measured were short-lived fission products. Cs-137 was one of the predominant isotope in the fallout debris and its deposition at Monaco due to Chernobyl was estimated to be around 1400 Bq m−2, which represents 25-40% of the integrated fallout at this latitude. The deposition of Pu-239+240 was much smaller and was estimated to be around 10 mBq m-2 or only 0.1% of the total deposition from nuclear weapon testing.
© 2001-2025 Fundación Dialnet · Todos los derechos reservados