Ayuda
Ir al contenido

Dialnet


Comparative Study for Text Chunking Using Deep Learning: Case of Modern Standard Arabic

  • Autores: Nabil Khoufi, Chafik Aloulou
  • Localización: Computación y Sistemas (CyS), ISSN 1405-5546, ISSN-e 2007-9737, Vol. 28, Nº. 2, 2024, págs. 517-527
  • Idioma: inglés
  • Enlaces
  • Resumen
    • Abstract: The task of chunking involves dividing a sentence into smaller phrases by identifying a limited amount of syntactic information. This process involves grouping together consecutive words to form phrases, also known as shallow parsing. Chunking does not provide information on the relationships between these phrases. This paper describes our approach to building chunking models for Arabic text using deep learning techniques. We evaluated several training models and compared their results using a rich data set. The results we obtained were highly encouraging when compared to previous related studies.

Los metadatos del artículo han sido obtenidos de SciELO México

Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus

Opciones de compartir

Opciones de entorno