Carlos Vicente Niño Rondón, Yesenia Restrepo Chaustre, Sergio Alexander Castro Casadiego
Introducción: Este artículo es el resultado de la investigación titulada " Desarrollo de un prototipo para optimizar las condiciones de acceso al SENA-Pescadero utilizando inteligencia artificial y herramientas de código abierto", desarrollada en el Servicio Nacional de Aprendizaje en 2020.
Problema: ¿Cómo identificar las técnicas de aprendizaje automático aplicadas a los procesos de visión por computador a través de una revisión bibliográfica? Objetivo: Determinar la aplicación, así como las ventajas y desventajas de las técnicas de aprendizaje automático enfocadas a la detección e identificación de personas.
Metodología: Revisión sistemática de la literatura en 4 bases de datos bibliográficas y científicas de alto impacto, utilizando filtros de búsqueda y criterios de selección de información.
Resultados: Técnicas de aprendizaje automático definidas como Análisis de Componentes Principales, Codificación Local de Coordenadas Regularizada de Etiquetas Débiles, Máquinas de Vectores de Soporte, Clasificadores en Cascada de Haar y EigenFaces y FisherFaces, así como su aplicabilidad en procesos de detección e identificación.
Conclusiones: La investigación permitió identificar las principales técnicas de inteligencia computacional basadas en machine learning aplicadas a la detección e identificación de personas. Su influencia se mostró en varios casos de aplicación, pero la mayoría de ellos se centraron en la implementación y optimización de sistemas de control de acceso, o tareas en las que se requería la identificación de personas para la ejecución de procesos Originalidad: A través de esta investigación se estudiaron y definieron las principales técnicas de machine learning utilizadas actualmente para la detección e identificación de personas.
Introduction: This article is the result of research entitled "Development of a prototype to optimize access conditions to the SENA-Pescadero using artificial intelligence and open-source tools", developed at the Servicio Nacional de Aprendizaje in 2020.
Problem: How to identify Machine Learning Techniques applied to computer vision processes through a literature review? Objective: Determine the application, as well as advantages and disadvantages of machine learning techniques focused on the detection and identification of people.
Methodology: Systematic literature review in 4 high-impact bibliographic and scientific databases, using search filters and information selection criteria.
Results: Machine Learning techniques defined as Principal Component Analysis, Weak Label Regularized Local Coordinate Coding, Support Vector Machines, Haar Cascade Classifiers and EigenFaces and FisherFaces, as well as their applicability in detection and identification processes.
Conclusion: The research led to the identification of the main computational intelligence techniques based on machine learning, applied to the detection and identification of people. Their influence was shown in several application cases, but most of them were focused on the implementation and optimization of access control systems, or tasks in which the identification of people was required for the execution of processes.
Originality: Through this research, we studied and defined the main machine learning techniques currently used for the detection and identification of people.
Limitations: The systematic review is limited to information available in the 4 databases consulted, and the amount of information is variable as articles are deposited in the databases.
© 2001-2025 Fundación Dialnet · Todos los derechos reservados