Publication:
Avances en la interacción física segura humano-robot y el desarrollo de sistemas elásticos articulares

Loading...
Thumbnail Image
Identifiers
Publication date
2017-09
Defense date
2017-11-30
Tutors
Journal Title
Journal ISSN
Volume Title
Publisher
Impact
Google Scholar
Export
Research Projects
Organizational Units
Journal Issue
Abstract
Los brazos robóticos asistenciales forman parte importante de un grupo de aplicaciones robóticas que requieren una continua interacción física con el usuario. En la actualidad este tipo de robot suele garantizar la seguridad de las personas que comparten espacio con ellos, gracias a la imposición de un conjunto de restricciones mecánicas y de control, que habitualmente entran en conflicto con el rendimiento dinámico de los mismos, al menos en términos de velocidad y carga útil. Esta tesis aborda los problemas implícitos en el diseño de brazos robóticos asistenciales, a fin de garantizar un correcto equilibrio entre seguridad y desempeño. Presenta un conjunto de directrices de diseño y propone métodos adecuados para el modelado dinámico, control y evaluación de la seguridad durante la interacción con los seres humanos. Comienza planteando un nuevo modelo de colisión humano-robot, que toma en cuenta la velocidad relativa, las propiedades elásticas de los materiales y la geometría superficial, tanto del ser humano como del robot. Este modelo ofrece una medida de la seguridad más acorde con el tipo de lesiones que pueden ocurrir en la robótica asistencial. Además, facilita una mejor comprensión de la influencia, que tienen los diferentes parámetros de diseño, en las lesiones producto de colisiones. Posteriormente, se realiza un análisis exhaustivo de la influencia que tiene la elasticidad mecánica articular sobre la seguridad y desempeño de robots asistenciales. Como aporte a los sistemas mecánicos seguros, se controla y ensaya con un novedoso actuador de rigidez variable. Además, se diseña y desarrolla un innovador sistema elástico pasivo, que permite la conveniente programación de los perfiles de rigidez, para maximizar el desempeño y garantizar la seguridad. Estos mecanismos son validados a través de simulaciones y ensayos reales sobre un banco de pruebas. Por último, y con el fin de que los resultados de este trabajo puedan ser utilizados para una futura estandarización de los parámetros de diseño y evaluación de robots asistenciales seguros, se resumen una serie de recomendaciones para el análisis de riesgo, el diseño mecánico y las estrategias de control.
Robotic assistance arms are an important part of a group of robotic applications that require continuous physical interaction with the user. At present, this type of robot usually guarantees the safety of people who share space with them, thanks to the imposition of a set of mechanical and control constraints, which usually conflict with their dynamic performance, at least in terms of speed and payload. This thesis addresses the problems implicit in the design of robotic assistance arms, in order to ensure a correct balance between safety and performance. It presents a set of design guidelines and proposes suitable methods for its dynamic modeling, control and evaluation of safety during interaction with humans. It begins by proposing a new model of human-robot collision, which takes into account the relative speed, elastic properties of materials and surface geometry, both human and robot. This model offers a measure of security more in line with the type of injuries that can occur in robotics assistance. In addition, it facilitates a better understanding of the influence of different design parameters have on the lesions produced from collisions. Next, a comprehensive analysis of the influence of mechanical elasticity on the safety and performance of assistance robots is performed. As a contribution to safe mechanical systems, it is controlled and tested with a new variable stiffness actuator. In addition, it designs and develops an innovative passive elastic system, which allows convenient programming of stiffness profiles, to maximize performance and ensure safety. These mechanisms are validated through simulations and actual tests on a test bench. Finally, and in order that the results of this work can be used for a future standardization of the parameters of design and evaluation of safe assistance robots, a series of recommendations for the risk analysis, the mechanical design and the strategies are summarized of control.
Description
Keywords
Robótica, Biomecánica, Control automático, Interacción hombre-máquina, Interacción humano-robot
Bibliographic citation
Collections