Publication:
Planning and estimation algorithms for human-like grasping

Loading...
Thumbnail Image
Identifiers
Publication date
2016-09
Defense date
2016-11-02
Tutors
Journal Title
Journal ISSN
Volume Title
Publisher
Impact
Google Scholar
Export
Research Projects
Organizational Units
Journal Issue
Abstract
The use of robots in human-like environments requires them to be able to sense and model unstructured scenarios. Thus, their success will depend on their versatility for interacting with the surroundings. This interaction often includes manipulation of objects for accomplishing common daily tasks. Therefore, robots need to sense, understand, plan and perform; and this has to be a continuous loop. This thesis presents a framework which covers most of the phases encountered in a common manipulation pipeline. First, it is shown how to use the Fast Marching Squared algorithm and a leader-followers strategy to control a formation of robots, simplifying a high dimensional path-planning problem. This approach is evaluated with simulations in complex environments in which the formation control technique is applied. Results are evaluated in terms of distance to obstacles (safety) and the needed deformation. Then, a framework to perform the grasping action is presented. The necessary techniques for environment modelling and grasp synthesis and path planning and control are presented. For the motion planning part, the formation concept from the previous chapter is recycled. This technique is applied to the planning and control of the movement of a complex hand-arm system. Tests using robot Manfred show the possibilities of the framework when performing in real scenarios. Finally, under the assumption that the grasping actions may not always result as it was previously planned, a Bayesian-based state-estimation process is introduced to estimate the final in-hand object pose after a grasping action is done, based on the measurements of proprioceptive and tactile sensors. This approach is evaluated in real experiments with Reex Takktile hand. Results show good performance in general terms, while suggest the need of a vision system for a more precise outcome.
La investigación en robótica avanza con la intención de evolucionar hacia el uso de los robots en entornos humanos. A día de hoy, su uso está prácticamente limitado a las fábricas, donde trabajan en entornos controlados realizando tareas repetitivas. Sin embargo, estos robots son incapaces de reaccionar antes los más mínimos cambios en el entorno o en la tarea a realizar. En el grupo de investigación del Roboticslab se ha construido un manipulador móvil, llamado Manfred, en el transcurso de los últimos 15 años. Su objetivo es conseguir realizar tareas de navegación y manipulación en entornos diseñados para seres humanos. Para las tareas de manipulación y agarre, se ha adquirido recientemente una mano robótica diseñada en la universidad de Gifu, Japón. Sin embargo, al comienzo de esta tesis, no se había realzado ningún trabajo destinado a la manipulación o el agarre de objetos. Por lo tanto, existe una motivación clara para investigar en este campo y ampliar las capacidades del robot, aspectos tratados en esta tesis. La primera parte de la tesis muestra la aplicación de un sistema de control de formaciones de robots en 3 dimensiones. El sistema explicado utiliza un esquema de tipo líder-seguidores, y se basa en la utilización del algoritmo Fast Marching Square para el cálculo de la trayectoria del líder. Después, mientras el líder recorre el camino, la formación se va adaptando al entorno para evitar la colisión de los robots con los obstáculos. El esquema de deformación presentado se basa en la información sobre el entorno previamente calculada con Fast Marching Square. El algoritmo es probado a través de distintas simulaciones en escenarios complejos. Los resultados son analizados estudiando principalmente dos características: cantidad de deformación necesaria y seguridad de los caminos de los robots. Aunque los resultados son satisfactorios en ambos aspectos, es deseable que en un futuro se realicen simulaciones más realistas y, finalmente, se implemente el sistema en robots reales. El siguiente capítulo nace de la misma idea, el control de formaciones de robots. Este concepto es usado para modelar el sistema brazo-mano del robot Manfred. Al igual que en el caso de una formación de robots, el sistema al completo incluye un número muy elevado de grados de libertad que dificulta la planificación de trayectorias. Sin embargo, la adaptación del esquema de control de formaciones para el brazo-mano robótico nos permite reducir la complejidad a la hora de hacer la planificación de trayectorias. Al igual que antes, el sistema se basa en el uso de Fast Marching Square. Además, se ha construido un esquema completo que permite modelar el entorno, calcular posibles posiciones para el agarre, y planificar los movimientos para realizarlo. Todo ello ha sido implementado en el robot Manfred, realizando pruebas de agarre con objetos reales. Los resultados muestran el potencial del uso de este esquema de control, dejando lugar para mejoras, fundamentalmente en el apartado de la modelización de objetos y en el cálculo y elección de los posibles agarres. A continuación, se trata de cerrar el lazo de control en el agarre de objetos. Una vez un sistema robótico ha realizado los movimientos necesarios para obtener un agarre estable, la posición final del objeto dentro de la mano resulta, en la mayoría de las ocasiones, distinta de la que se había planificado. Este hecho es debido a la acumulación de fallos en los sistemas de percepción y modelado del entorno, y los de planificación y ejecución de movimientos. Por ello, se propone un sistema Bayesiano basado en un filtro de partículas que, teniendo en cuenta la posición de la palma y los dedos de la mano, los datos de sensores táctiles y la forma del objeto, estima la posición del objeto dentro de la mano. El sistema parte de una posición inicial conocida, y empieza a ejecutarse después del primer contacto entre los dedos y el objeto, de manera que sea capaz de detectar los movimientos que se producen al realizar la fuerza necesaria para estabilizar el agarre. Los resultados muestran la validez del método. Sin embargo, también queda claro que, usando únicamente la información táctil y de posición, hay grados de libertad que no se pueden determinar, por lo que, para el futuro, resultaría aconsejable la combinación de este sistema con otro basado en visión. Finalmente se incluyen 2 anexos que profundizan en la implementación de la solución del algoritmo de Fast Marching y la presentación de los sistemas robóticos reales que se han usado en las distintas pruebas de la tesis.
Description
Mención Internacional en el título de doctor
Keywords
Robots, Human-like environments, Manipulators, Grasping, Algorithms
Bibliographic citation
Collections