Skip to main content
Log in

Results on the Approximate Controllability of Hilfer Type fractional Semilinear Control Systems

  • Published:
Qualitative Theory of Dynamical Systems Aims and scope Submit manuscript

Abstract

The approximate controllability of Hilfer fractional semilinear control systems is the main focus of this study. Two distinct kinds of necessary requirements have been investigated. For the first set of results, we use Schauder’s fixed point techniques, compactness of the relevant fractional operator, and concepts on fractional derivative to obtain them. Utilizing the Gronwall’s inequality in the second set, we are able to demonstrate the main points without using the corresponding fractional operator’s compactness or the fixed point method. Also provided is a case study for the validation of theoretical findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

My manuscript has no associated data.

References

  1. Abbas, S., Benchohra, M., Lazreg, J.E., Zhou, Y.: A survey on Hadamard and Hilfer fractional differential equations: analysis and stability. Chaos Solitons Fractals 102, 47–71 (2017)

    MathSciNet  MATH  Google Scholar 

  2. Ahmed, H.M., El-Borai, M.M.: Hilfer fractional stochastic integro-differential equations. Appl. Math. Comput. 331, 182–189 (2018)

    MathSciNet  MATH  Google Scholar 

  3. Almalahi, M.A., Panchal, S.K.: On the theory of \(\psi \)-Hilfer nonlocal Cauchy problem. Zh. Sib. Fed. Univ. Mat. Fiz. 14(2), 159–175 (2021)

    MathSciNet  MATH  Google Scholar 

  4. Almalahi, M.A., Bazighifan, O., Panchal, S.K., Askar, S.S., Oros, G.I.: Analytical study of two nonlinear coupled hybrid systems involving generalized Hilfer fractional operators. Fractal Fract. 5(5), 178 (2021). https://doi.org/10.3390/fractalfract5040178

    Article  Google Scholar 

  5. Baleanu, D., Machado, J.A.T., Luo, A.C.J.: Fractional Dynamics and Control. Springer, Berlin (2012)

    Google Scholar 

  6. Debbouche, A., Antonov, V.: Approximate controllability of semilinear Hilfer fractional differential inclusions with impulsive control inclusion conditions in Banach spaces. Chaos, Solitons Fractals 102, 140–148 (2017)

    MathSciNet  MATH  Google Scholar 

  7. Debbouche, A., Baleanu, D.: Controllability of fractional evolution nonlocal impulsive quasilinear delay integro-differential systems. Comput. Math. Appl. 62(3), 1442–1450 (2011)

    MathSciNet  MATH  Google Scholar 

  8. Dineshkumar, C., Udhayakumar, R., Vijayakumar, V., Nisar, K.S.: A discussion on the approximate controllability of Hilfer fractional neutral stochastic integro-differential systems. Chaos, Solitons Fractals 142, 110472 (2021)

    MathSciNet  MATH  Google Scholar 

  9. Dineshkumar, C., Nisar, K.S., Udhayakumar, R., Vijayakumar, V.: A discussion on approximate controllability of Sobolev-type Hilfer neutral fractional stochastic differential inclusions. Asian J. Control 24(5), 2378–2394 (2022)

    MathSciNet  MATH  Google Scholar 

  10. Furati, K.M., Kassim, M.D., Tatar, N.E.: Existence and uniqueness for a problem involving Hilfer fractional derivative. Comput. Math. Appl. 641, 616–626 (2012)

    MathSciNet  MATH  Google Scholar 

  11. Fernandez, S.B., Nieto, J.J.: Basic control theory for linear fractional differential equations with constant coefficients. Front. Phys. 8(377), 1–6 (2020)

    Google Scholar 

  12. Gu, H., Trujillo, J.: Existence of mild solution for evolution equation with Hilfer fractional derivative. Appl. Math. Comput. 257, 344–354 (2015)

    MathSciNet  MATH  Google Scholar 

  13. Harrat, A., Nieto, J.J., Debbouche, A.: Solvability and optimal controls of impulsive Hilfer fractional delay evolution inclusions with Clarke subdifferential. J. Comput. Appl. Math. 344, 725–737 (2018)

    MathSciNet  MATH  Google Scholar 

  14. Hilfer, R.: Experimental evidence for fractional time evolution in glass materials. Chem. Phys. 284(1–2), 399–408 (2002)

    Google Scholar 

  15. Hilfer, R.: Application of Fractional Calculus in Physics. World Scientific Publishing, Singapore (2000)

    MATH  Google Scholar 

  16. Kavitha, K., Vijayakumar, V., Udhayakumar, R., Ravichandran, C.: Results on controllability of Hilfer fractional differential equations with infinite delay via measures of noncompactness. Asian J. Control 124(3), 1406–1410 (2021). https://doi.org/10.1002/asjc.2549

    Article  MathSciNet  Google Scholar 

  17. Kavitha, K., Vijayakumar, V., Udhayakumar, R.: Results on controllability of Hilfer fractional neutral differential equations with infinite delay via measures of noncompactness. Chaos, Solitons Fractals 139, 110035 (2020)

    MathSciNet  MATH  Google Scholar 

  18. Kavitha, K., Vijayakumar, V., Udhayakumar, R., Sakthivel, N., Nisar, K.S.: A note on approximate controllability of the Hilfer fractional neutral differential inclusions with infinite delay. Math. Methods Appl. Appl. 44(6), 4428–4447 (2021)

    MathSciNet  MATH  Google Scholar 

  19. Kavitha, K., Nisar, K.S., Shukla, A., Vijayakumar, V., Rezapour, S.: A discussion concerning the existence results for the Sobolev-type Hilfer fractional delay integro-differential systems. Adv. Differ. Equ. 467, 1–18 (2021)

    MathSciNet  MATH  Google Scholar 

  20. Kilbas, A., Srivastava, H., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, Amesterdam (2006)

    MATH  Google Scholar 

  21. Kumar, S., Sukavanam, N.: Approximate controllability of fractional order semilinear systems with bounded delay. J. Differ. Equ. 252(11), 6163–6174 (2012)

    MathSciNet  MATH  Google Scholar 

  22. Lakshmikantham, V., Leela, S., Devi, J.V.: Theory of Fractional Dynamic Systems. Cambridge Scientific Publishers, Cambridge (2009)

    MATH  Google Scholar 

  23. Mohan Raja, M., et al.: New discussion on nonlocal controllability for fractional evolution system of order \(1<r<2\). Adv. Difference Equ. 2021, 1–19 (2021)

    MathSciNet  Google Scholar 

  24. Mohan Raja, M., et al.: Optimal control and approximate controllability for fractional integrodifferential evolution equations with infinite delay of order \(r\in (1,2)\). Optim. Control Appl. Methods 43(4), 996–1019 (2022)

    MathSciNet  Google Scholar 

  25. Naito, K.: Controllability of semilinear control systems dominated by the linear part. SIAM J. Control. Optim. 25(3), 715–722 (1987)

    MathSciNet  MATH  Google Scholar 

  26. Noeiaghdam, S., Micula, S., Nieto, J.J.: A novel technique to control the accuracy of a nonlinear fractional order model of covid-19: application of the CESTAC method and the CADNA librar. Mathematics 9(1321), 1–26 (2021)

    Google Scholar 

  27. Pierri, M., O’Regan, D., Prokopczyk, A.: On recent developments treating the exact controllability of abstract control problems. Electron. J. Differ. Equ. 2016(160), 1–9 (2016)

    MathSciNet  MATH  Google Scholar 

  28. Podlubny, I.: Fractional Differential Equations, An Introduction to Fractional Derivatives, Fractional Differential Equations, to Method of their Solution and Some of their Applications, San Diego. Academic Press, CA (1999)

    MATH  Google Scholar 

  29. Subashini, R., Jothimani, K., Nisar, K.S., Ravichandran, C.: New results on nonlocal functional integro-differential equations via Hilfer fractional derivative. Alex. Eng. J. 59(5), 2891–2899 (2020)

    Google Scholar 

  30. Sukavanam, N., Tafesse, S.: Approximate controllability of a delayed semilinear control system with growing nonlinear term. Nonlinear Anal. 74(18), 6868–6875 (2011)

    MathSciNet  MATH  Google Scholar 

  31. Sukavanam, N., Kumar, M.: \(S\)-controllability of an abstract first order semilinear control system. Numer. Funct. Anal. Optim. 31(7–9), 1023–1034 (2010)

    MathSciNet  MATH  Google Scholar 

  32. Shukla, A., Sukavanam, N., Pandey, D.N.: Complete controllability of semilinear stochastic systems with delay in both state and control. Math. Rep. (Bucur.) 18(2), 247–259 (2016)

    MathSciNet  MATH  Google Scholar 

  33. Suwan, I., Abdo, Mohammed S., Abdeljawad, T., Matar, Mohammed M., Boutiara, A., Almalahi, Mohammed A.: Existence theorems for \(\Psi \)-fractional hybrid systems with periodic boundary conditions. AIMS Math. 7(1), 171–186 (2022)

    MathSciNet  MATH  Google Scholar 

  34. Vijayakumar, V., Udhayakumar, R.: Results on approximate controllability for non-densely defined Hilfer fractional differential system with infinite delay. Chaos Solitons Fractals 139, 110019 (2020)

    MathSciNet  MATH  Google Scholar 

  35. Vijayakumar, V., Nisar, K.S.: Results concerning to approximate controllability of non-densely defined Sobolev-type Hilfer fractional neutral delay differential system. Math. Methods Appl. Appl. 44, 13615–13632 (2021). https://doi.org/10.1002/mma.7647

    Article  MathSciNet  MATH  Google Scholar 

  36. Ma, Y.K., Kavitha, K., Albalawi, W., Shukla, A., Nisar, K.S., Vijayakumar, V.: An analysis on the approximate controllability of Hilfer fractional neutral differential systems in Hilbert spaces. Alex. Eng. J. 61(9), 7291–7302 (2022)

    Google Scholar 

  37. Wang, J.R., Zhang, Y.R.: Nonlocal initial value problems for differential equation with Hilfer fractional derivative. Appl. Math. Comput. 266, 850–859 (2015)

    MathSciNet  MATH  Google Scholar 

  38. Yang, M., Wang, Q.: Approximate controllability of Hilfer fractional differential inclusions with nonlocal conditions. Math. Methods Appl. Sci. 40(4), 1126–1138 (2017)

    MathSciNet  MATH  Google Scholar 

  39. Zhou, Y., Jiao, F.: Existence of mild solutions for fractional neutral evolution equations. Comput. Math. Appl. 59, 1063–1077 (2010)

    MathSciNet  MATH  Google Scholar 

  40. Zhou, Y.: Basic Theory of Fractional Differential Equations. World Scientific, Singapore (2014)

    MATH  Google Scholar 

  41. Zhou, Y.: Fractional Evolution Equations and Inclusions: Analysis and Control. Elsevier, New York (2015)

    Google Scholar 

  42. Yang, M., Wang, Q.: Existence of mild solutions for a class of Hilfer fractional evolution equations with nonlocal conditions. Fract. Calc. Appl. Anal. 20(3), 679–705 (2017)

    MathSciNet  MATH  Google Scholar 

  43. Gu, H., Trujillo, J.J.: Existence of mild solution for evolution equation with Hilfer fractional derivative. Appl. Math. Comput. 257, 344–354 (2015)

    MathSciNet  MATH  Google Scholar 

  44. Sakthivel, R., Ren, Y., Mahmudov, N.I.: On the approximate controllability of semilinear fractional differential systems. Comput. Math. Appl. 62(3), 1451–1459 (2011)

    MathSciNet  MATH  Google Scholar 

  45. Balachandran, K., Park, J.Y., Trujillo, J.J.: Controllability of nonlinear fractional dynamical systems. Nonlinear Anal. 75(4), 1919–1926 (2012)

    MathSciNet  MATH  Google Scholar 

Download references

Funding

There is no funder for this work.

Author information

Authors and Affiliations

Authors

Contributions

All authors reviewed the manuscript and equally contributed.

Corresponding author

Correspondence to Anurag Shukla.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vijayakumar, V., Malik, M. & Shukla, A. Results on the Approximate Controllability of Hilfer Type fractional Semilinear Control Systems. Qual. Theory Dyn. Syst. 22, 58 (2023). https://doi.org/10.1007/s12346-023-00759-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12346-023-00759-2

Keywords

Mathematics Subject Classification

Navigation