Skip to main content
Log in

Analysis of Q-Fractional Implicit Differential Equation with Nonlocal Riemann–Liouville and Erdélyi-Kober Q-Fractional Integral Conditions

  • Published:
Qualitative Theory of Dynamical Systems Aims and scope Submit manuscript

Abstract

This manuscript aims to present the existence, uniqueness, and various kinds of Ulam’s stability for the solution of the implicit q-fractional differential equation corresponding to nonlocal Erdélyi-Kober q-fractional integral conditions. We use different fixed point theorems to obtain the existence and uniqueness of solution. For stability, we utilize the classical technique of nonlinear functional analysis. The examples are presented as applications to illustrate the main results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agarwal, R.P.: Certain fractional q-integrals and q-derivatives. Proc. Camb. Philos. Soc. 66(2), 365–370 (1969)

    MathSciNet  MATH  Google Scholar 

  2. Agarwal, R.P., Al-Hutami, H., Ahmad, B.: A Langevin-Type q-Variant System of Nonlinear Fractional Integro-Difference Equations with Nonlocal Boundary Conditions. Fractal Fract. 6(45), 1–27 (2022)

    Google Scholar 

  3. Ahmad, B., Alghamdi, B., Agarwal, R.P., Alsaedi, A.: Riemann-Liouville Fractional Integro-Differential Equations With Fractional Nonlocal Multi-Point Boundary Conditions. Fractals. 30(1), 1–11 (2022)

    MATH  Google Scholar 

  4. Ahmad, B., Etemad, S., Ettefagh, M., Rezapour, S.: On the existence of solutions for fractional q-difference inclusions with q-antiperiodic boundary conditions. Bull. Math. Soc. Sci. Math. Roum., Nouv. Sér. 59(107(2)), 119–134 (2016)

    MathSciNet  MATH  Google Scholar 

  5. Alam, M., Shah, D.: Hyers-Ulam stability of coupled implicit fractional integro-differential equations with Riemann-Liouville derivatives. Chaos, Solitons & Fractals 150, 111122 (2021)

    MathSciNet  MATH  Google Scholar 

  6. Alam, M., Zada, A.: Implementation of q-calculus on q-integro-differential equation involving anti-periodic boundary conditions with three criteria. Chaos, Solitons & Fractals 111625 (2021)

  7. Alam, M., Zada, A., Popa, I.L., Kheiryan, A., Rezapour, S., Kaabar, M.K.A.: A Fractional Differential Equation with Multi-Point Strip Boundary Condition involving the Caputo Fractional Derivative and its Hyers-Ulam Stability. Bound. Value Probl. 2021, 73 (2021)

    MathSciNet  MATH  Google Scholar 

  8. Alam, M., Zada, A., Riaz, U.: On a coupled impulsive fractional integrodifferential system with Hadamard derivatives. Qual. Theory Dyn. Syst. 21(8), 1–31 (2021)

    MathSciNet  MATH  Google Scholar 

  9. Alizadeh, S., Baleanu, D., Rezapour, S.: Analyzing transient response of the parallel RCL circuit by using the Caputo-Fabrizio fractional derivative. Adv. Differ. Equ. 2020, 55 (2020)

    MathSciNet  MATH  Google Scholar 

  10. Al-Salam, W.A.: Some fractional q-integrals and q-derivatives. Proc. Ednib. Math. Soc. II Ser. 15(2), 135–140 (1996)

    MathSciNet  MATH  Google Scholar 

  11. Baleanu, D., Etemad, S., Pourrazi, S., Rezapour, S.: On the new fractional hybrid boundary value problems with three-point integral hybrid conditions. Adv. Differ. Equ. 2019, 473 (2019)

    MathSciNet  MATH  Google Scholar 

  12. Baleanu, D., Etemad, S., Rezapour, S.: A hybrid Caputo fractional modeling for thermostat with hybrid boundary value conditions. Bound. Value Probl. 2020, 64 (2020)

    MathSciNet  MATH  Google Scholar 

  13. Browder, A.: Mathematical Analysis: An Introduction. Springer-Verlag, New York (1996)

    MATH  Google Scholar 

  14. Erdélyi, A., Kober, H.: Some remarks on Hankel transforms. Quart. J. Math., Oxford, Second Ser. 11, 212–221 (1940)

    MathSciNet  MATH  Google Scholar 

  15. Ernst, T.: The History of q-Calculus and a New Method. U. U. D. M. Report 2000: 16, ISSN 1101-3591. Uppsala University (2000)

  16. Gaulue, L.: Some results involving generalized Eedèlyi-Kober fractional q-integral operators. Revista Tecno-Cientfica URU. 6, 77–89 (2014)

    Google Scholar 

  17. Granas, A., Dugundji, J.: Fixed point theory. Springer-Verlag, New York (2003)

    Book  Google Scholar 

  18. Hale, J.K., Lunel, S.M.V.: Introduction to functional differential equations, Applied Mathematicals Sciences series. Springer-Verlag, New York (1993)

    Google Scholar 

  19. Hyers, D.H.: On the stability of the linear functional equation. Natl. Acad. Sci. U.S.A. 27(4), 222–224 (1941)

    MathSciNet  MATH  Google Scholar 

  20. Jackson, F.H.: On q-functions and a certain difference operator. Earth Environ. Sci. Trans. R. Soc. Edinb. 46(2), 253–281 (1909)

    Google Scholar 

  21. Jackson, F.H.: On a q-definite integrals. Quart. J. 41, 193–203 (1910)

    MATH  Google Scholar 

  22. Jiang, M., Huang, R.: Existence of solutions for q-fractional differential equations with nonlocal Erdélyi-Kober q-fractional integral condition. AIMS Math. 5(6), 6537–6551 (2020)

    MathSciNet  MATH  Google Scholar 

  23. Kac, V., Cheung, P.: Quantum Calculus. Springer, New york (2001)

    MATH  Google Scholar 

  24. Kalla, S.L., Kiryakova, V.S.: An H-function generalized fractional calculus based upon compositions of Erdélyi-Kober operators in Lp. Math. Japonica. 35, 1–21 (1990)

    MathSciNet  MATH  Google Scholar 

  25. Kilbas, A.A., Marichev, O.I., Samko, S.G.: Fractional integrals and derivatives, theory and applications. Gordonand Breach, Switzerland (1993)

    MATH  Google Scholar 

  26. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies, vol. 204. Elsevier Science B. V, Amsterdam, The Netherlands (2006)

    Google Scholar 

  27. Kiryakova, V.: Generalized fractional calculus and applications. Pitman Research Notes in Math., vol. 301. Longman, Harlow - J. Wiley, N. York (1994)

    Google Scholar 

  28. Lakshmikantham, V., Leela, S., Vasundhara, J.: Theory of fractional dynamic Systems. Cambridge Academic Publishers, Cambridge, UK (2009)

    MATH  Google Scholar 

  29. Leibniz, G.W.: Mathematica Shiften. Georg Olms Verlagsbuch-handlung, Hildesheim (1962)

    Google Scholar 

  30. Luo, D., Alam, M., Zada, A., Riaz, U., Luo, Z.: Existence and stability of implicit fractional differential equations with Stieltjes boundary conditions having Hadamard derivatives. Complexity 2021(3), 1–36 (2021)

    Google Scholar 

  31. Mohammadia, H., Kumar, S., Rezapour, S., Etemad, S.: A theoretical study of the Caputo-Fabrizio fractional modeling for hearing loss due to Mumps virus with optimal control. Chaos, Solitons & Fractals 144, 110668 (2021)

    MathSciNet  MATH  Google Scholar 

  32. Obloza, M.: Hyers stability of the linear differential equation. Rocznik NaukDydakt, Prace Mat. 13, 259–270 (1993)

    MathSciNet  MATH  Google Scholar 

  33. Podlubny, I.: Fractional differential equations. Academic Press, New York (1999)

    MATH  Google Scholar 

  34. Rajković, P.M., Marinković, S.D., Stanković, M.S.: Fractional integrals and derivatives in q-calculus. Appl. Anal. Discrete Math. 1(1), 311–323 (2007)

    MathSciNet  MATH  Google Scholar 

  35. Ren, J., Zhai, C.: A fractional q-difference equation with integral boundary conditions and comparison theorem. Int. J. Nonlinear Sci. Numer. Simul. 18(7–8), 575–583 (2017)

    MathSciNet  MATH  Google Scholar 

  36. Sneddon, I.N.: The use in mathematical analysis of Erdélyi-Kober operators and some of their applications. In: Fractional Calculus and Its Applications. Proc. Internat. Conf. Held in New Haven, Lecture Notes in Math Springer, N. York 457, 37–79 (1975)

    Google Scholar 

  37. Thongsalee, N., Ntouyas, S., Tariboon, J.: Nonlinear Riemann-Liouville fractional differential equations with nonlocal Erdélyi-Kober fractional integral conditions. Fract. Calc. Appl. Anal. 19, 480–497 (2016)

    MathSciNet  MATH  Google Scholar 

  38. Wang, X., Alam, M., Zada, A.: On coupled impulsive fractional integro-differential equations with Riemann-Liouville derivatives. AIMS Math. 6(2), 1561–1595 (2020)

    MathSciNet  MATH  Google Scholar 

  39. Yang, X.J., Srivastava, H.M., Cattani, C.: Local fractional homotopy perturbation method for solving fractial partial differential equations arising in mathematical physics. Romanian Reports in Phys. 67, 752–761 (2015)

    Google Scholar 

  40. Zada, A., Alam, M., Riaz, U.: Analysis of q-fractional implicit boundary value problems having Stieltjes integral conditions. Math. Meth. Appl. Sci. 44(6), 4381–4413 (2020)

    MathSciNet  MATH  Google Scholar 

  41. Zada, A., Alzabut, J., Waheed, H., Popa, I.L.: Ulam-Hyers stability of impulsive integrodifferential equations with Riemann-Liouville boundary conditions. Adv. Differ. Equ. 2020(1), 1–50 (2020)

    MathSciNet  MATH  Google Scholar 

  42. Zada, A., Fatma, S., Ali, Z., Xu, J., Cui, Y.: Stability results for a coupled system of impulsive fractional differential equations. Math. 7(10), 927 (2019)

    Google Scholar 

  43. Zada, A., Li, T.: Connections between Hyers-Ulam stability and uniform exponential stability of discrete evolution families of bounded linear operators over Banach spaces. Adv. Differ. Equ. 2016, 153 (2016)

    MathSciNet  MATH  Google Scholar 

  44. Zada, A., Pervaiz, B., Shah, S.O., Xu, J.: Stability analysis of first order impulsive nonautonomous system on timescales. Math. Meth. App. Sci. 43(8), 5097–5113 (2020)

    MathSciNet  MATH  Google Scholar 

  45. Zada, A., Rizwan, R., Xu, J., Fu, Z.: On implicit impulsive Langevin equation involving mixed order derivatives. Adv. Differ. Equ. 2019(1), 489 (2019)

    MathSciNet  MATH  Google Scholar 

  46. Zada, A., Shah, O., Shah, R.: Hyers-Ulam stability of non autonomous systems in terms of boundedness of Cauchy problems. Appl. Math. Comput. 271, 512–518 (2015)

    MathSciNet  MATH  Google Scholar 

  47. Zada, A., Waheed, H.: Stability analysis of implicit fractional differential equations with anti-periodic integral boundary value problem. Ann. Univ. Paedagog. Crac. Stud. Math. 19, 5–25 (2020)

    MathSciNet  Google Scholar 

  48. Zada, A., Wang, P., Lassoued, D., Li, T.: Connections between Hyers-Ulam stability and uniform exponential stability of 2-periodic linear nonautonomous systems. Adv. Differ. Equ. 2017(1), 1–7 (2017)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehboob Alam.

Ethics declarations

Availability of Data and Materials

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

Conflict of interest

The authors declare that they have no competing interests.

Funding

Not applicable.

Authors’ contributions

The authors declare that the study was realized in collaboration with equal responsibility. All authors read and approved the final manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zada, A., Alam, M., Khalid, K.H. et al. Analysis of Q-Fractional Implicit Differential Equation with Nonlocal Riemann–Liouville and Erdélyi-Kober Q-Fractional Integral Conditions. Qual. Theory Dyn. Syst. 21, 93 (2022). https://doi.org/10.1007/s12346-022-00623-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12346-022-00623-9

Keywords

Mathematics Subject Classification

Navigation