Skip to main content

Advertisement

Log in

TLR4 activation inhibits the proliferation and osteogenic differentiation of skeletal muscle stem cells by downregulating LGI1

  • Original Article
  • Published:
Journal of Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

Skeletal muscle stem cells (SMSCs) are vital to the growth, maintenance, and repair of the muscles; emerging evidence has indicated that Toll-like receptor 4 (TLR4) can potentially regulate muscle regeneration. In present study, in vitro and in vivo experiments were performed to explore the correlation of TLR4 with leucine-rich glioma-inactivated 1 (LGI1) as well as their effects on the proliferation and osteogenesis potential of SMSCs. In order to examine the regulatory mechanisms of TLR4 and LGI1 in SMSCs, the obtained cells were treated with lipopolysaccharide (LPS, used as an activator of TLR4) of different concentration at different time points as well as the siRNA against LGI1. Subsequently, a series of detection was undertaken in order to measure the proliferation and differentiation potential of SMSCs, which involved detection of the related factors, cell activity, and the sphere-forming capability. Following LPS treatment, the increased TLR4 expression and reduced LGI1 expression were observed. Consequently, we also discovered that Erk signaling pathway was inactivated and cell proliferation and osteogenesis capabilities declined, presented by the downregulation of related factors such as cyclin B1 and runt-related transcription factor 2. Moreover, the cell activity and sphere-formation performance of SMSCs were also declined. These results were also validated in rats with cecal ligation and perforation-induced rat models with sepsis. In conclusion, the present study reveals a regulatory mechanism in SMSCs whereby LGI1 expression is reduced by TLR4, thus impeding cell proliferation and osteogenesis, highlighting TLR4 as a potential therapeutic target against many diseases related to SMSCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

Data are available upon reasonable request.

Abbreviations

TLR4:

Toll-like receptor 4

LGI1:

Leucine-rich glioma-inactivated 1

Erk:

Extracellular regulated protein kinases

CCNB1:

Cyclin B1

CCND1:

Cyclin D1

ALP:

Alkaline phosphatase

BGP:

Biliary glycoprotein

RUNX2:

Runt-related transcription factor 2

MuRF1:

Muscle RING-finger 1

MAFbx:

Muscle atrophy F-box

GAPDH:

Glyceraldehyde-3-phosphate dehydrogenase

SMSCs:

Skeletal muscle stem cells

LPS:

Lipopolysaccharide

PBS:

Phosphate-buffered saline

CLP:

Cecal ligation and perforation

DMEM:

Dulbecco’s modified Eagle’s medium

FBS:

Fetal bovine serum

RT-qPCR:

Reverse transcription quantitative polymerase chain reaction

NC:

Negative control

GAPDH:

Glyceraldehyde-3-phosphate dehydrogenase

OD:

Optical density

ELISA:

Enzyme-linked immunosorbent assay

DEPC:

Diethyl pyrocarbonate

PI:

Propidium iodide

C5a:

Complement 5a

IL-6:

Interleukin 6

HE:

Hematoxylin and eosin

ANOVA:

One-way analysis of variance

References

  1. Aravena-Canales D, Aedo JE, Molina A, Valdes JA (2021) Regulation of the early expression of MAFbx/atrogin-1 and MuRF1 through membrane-initiated cortisol action in the skeletal muscle of rainbow trout. Comp Biochem Physiol B Biochem Mol Biol 253:110565. https://doi.org/10.1016/j.cbpb.2021.110565

    Article  CAS  PubMed  Google Scholar 

  2. Bao MH, Feng X, Zhang YW, Lou XY, Cheng Y, Zhou HH (2013) Let-7 in cardiovascular diseases, heart development and cardiovascular differentiation from stem cells. Int J Mol Sci 14:23086–23102. https://doi.org/10.3390/ijms141123086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ban R, Zhang Y, Li K, Shi Q (2020) A case of myotonic dystrophy type I with rimmed vacuoles in skeletal muscle pathology. J Clin Rheumatol. https://doi.org/10.1097/RHU.0000000000001496

    Article  Google Scholar 

  4. Bosmann M, Ward PA (2013) The inflammatory response in sepsis. Trends Immunol 34:129–136. https://doi.org/10.1016/j.it.2012.09.004

    Article  CAS  PubMed  Google Scholar 

  5. Chatre L, Verdonk F, Rocheteau P, Crochemore C, Chretien F, Ricchetti M (2017) A novel paradigm links mitochondrial dysfunction with muscle stem cell impairment in sepsis. Biochim Biophys Acta Mol Basis Dis 1863:2546–2553. https://doi.org/10.1016/j.bbadis.2017.04.019

    Article  CAS  PubMed  Google Scholar 

  6. Chen X, Luo Y, Huang Z, Jia G, Liu G, Zhao H (2017) Akirin2 regulates proliferation and differentiation of porcine skeletal muscle satellite cells via ERK1/2 and NFATc1 signaling pathways. Sci Rep 7:45156. https://doi.org/10.1038/srep45156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Davegardh C, Broholm C, Perfilyev A, Henriksen T, Garcia-Calzon S, Peijs L, Hansen NS, Volkov P, Kjobsted R, Wojtaszewski JF, Pedersen M, Pedersen BK, Ballak DB, Dinarello CA, Heinhuis B, Joosten LA, Nilsson E, Vaag A, Scheele C, Ling C (2017) Abnormal epigenetic changes during differentiation of human skeletal muscle stem cells from obese subjects. BMC Med 15:39. https://doi.org/10.1186/s12916-017-0792-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Fang J, Zhang S, Liu Z, Pan Y, Cao L, Hou P, Chen Y, Zhang Y, Li X, Liu R, Shang Q, Zheng Z, Song L, Li Y, Fu Z, Lin L, Melino G, Wang Y, Shao C, Shi Y (2020) Skeletal muscle stem cells confer maturing macrophages anti-inflammatory properties through insulin-like growth factor-2. Stem Cells Transl Med 9:773–785. https://doi.org/10.1002/sctm.19-0447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Fitzgerald KA, Kagan JC (2020) Toll-like receptors and the control of immunity. Cell 180:1044–1066. https://doi.org/10.1016/j.cell.2020.02.041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Foletta VC, White LJ, Larsen AE, Leger B, Russell AP (2011) The role and regulation of MAFbx/atrogin-1 and MuRF1 in skeletal muscle atrophy. Pflugers Arch 461:325–335. https://doi.org/10.1007/s00424-010-0919-9

    Article  CAS  PubMed  Google Scholar 

  11. Frontera WR, Ochala J (2015) Skeletal muscle: a brief review of structure and function. Calcif Tissue Int 96:183–195. https://doi.org/10.1007/s00223-014-9915-y

    Article  CAS  PubMed  Google Scholar 

  12. Garcia MM, Goicoechea C, Molina-Alvarez M, Pascual D (2020) Toll-like receptor 4: a promising crossroads in the diagnosis and treatment of several pathologies. Eur J Pharmacol 874:172975. https://doi.org/10.1016/j.ejphar.2020.172975

    Article  CAS  PubMed  Google Scholar 

  13. Grasselli C, Ferrari D, Zalfa C, Soncini M, Mazzoccoli G, Facchini FA, Marongiu L, Granucci F, Copetti M, Vescovi AL, Peri F, De Filippis L (2018) Toll-like receptor 4 modulation influences human neural stem cell proliferation and differentiation. Cell Death Dis 9:280. https://doi.org/10.1038/s41419-017-0139-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Gu W, Brodtkorb E, Piepoli T, Finocchiaro G, Steinlein OK (2005) LGI1: a gene involved in epileptogenesis and glioma progression? Neurogenetics 6:59–66. https://doi.org/10.1007/s10048-005-0216-5

    Article  CAS  PubMed  Google Scholar 

  15. Huang M, Cai S, Su J (2019) The pathogenesis of sepsis and potential therapeutic targets. Int J Mol Sci 20https://doi.org/10.3390/ijms20215376

  16. Hydbring P, Malumbres M, Sicinski P (2016) Non-canonical functions of cell cycle cyclins and cyclin-dependent kinases. Nat Rev Mol Cell Biol 17:280–292. https://doi.org/10.1038/nrm.2016.27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lai D, Tang J, Chen L, Fan EK, Scott MJ, Li Y, Billiar TR, Wilson MA, Fang X, Shu Q, Fan J (2018) Group 2 innate lymphoid cells protect lung endothelial cells from pyroptosis in sepsis. Cell Death Dis 9:369. https://doi.org/10.1038/s41419-018-0412-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Laker RC, Ryall JG (2016) DNA methylation in skeletal muscle stem cell specification, proliferation, and differentiation. Stem Cells Int 2016:5725927https://doi.org/10.1155/2016/5725927

  19. Laroye C, Gibot S, Reppel L, Bensoussan D (2017) Concise review: mesenchymal stromal/stem cells: a new treatment for sepsis and septic shock? Stem Cells 35:2331–2339. https://doi.org/10.1002/stem.2695

    Article  PubMed  Google Scholar 

  20. Lee WJ (2011) IGF-I exerts an anti-inflammatory effect on skeletal muscle cells through down-regulation of TLR4 signaling. Immune Netw 11:223–226. https://doi.org/10.4110/in.2011.11.4.223

    Article  PubMed  PubMed Central  Google Scholar 

  21. Li F, Sheng Z, Lan H, Xu J, Li J (2020) Downregulated CHI3L1 alleviates skeletal muscle stem cell injury in a mouse model of sepsis. IUBMB Life 72:214–225. https://doi.org/10.1002/iub.2156

    Article  CAS  PubMed  Google Scholar 

  22. Li J, Hao L, Wu J, Zhang J, Su J (2016) Linarin promotes osteogenic differentiation by activating the BMP-2/RUNX2 pathway via protein kinase A signaling. Int J Mol Med 37:901–910. https://doi.org/10.3892/ijmm.2016.2490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Liu B, Shi Y, He H, Cai M, Xiao W, Yang X, Chen S, Jia X, Wang J, Lai S (2018) miR-221 modulates skeletal muscle satellite cells proliferation and differentiation. In Vitro Cell Dev Biol Anim 54:147–155. https://doi.org/10.1007/s11626-017-0210-x

    Article  CAS  PubMed  Google Scholar 

  24. Liu G, Friggeri A, Yang Y, Park YJ, Tsuruta Y, Abraham E (2009) miR-147, a microRNA that is induced upon Toll-like receptor stimulation, regulates murine macrophage inflammatory responses. Proc Natl Acad Sci U S A 106:15819–15824. https://doi.org/10.1073/pnas.0901216106

    Article  PubMed  PubMed Central  Google Scholar 

  25. Liu J, Li M, Kong L, Cao M, Zhang M, Wang Y, Song C, Fang X, Chen H, Zhang C (2021) CircARID1A regulates mouse skeletal muscle regeneration by functioning as a sponge of miR-6368. FASEB J 35:e21324. https://doi.org/10.1096/fj.202001992R

    Article  CAS  PubMed  Google Scholar 

  26. Massenet J, Gardner E, Chazaud B, Dilworth FJ (2021) Epigenetic regulation of satellite cell fate during skeletal muscle regeneration. Skelet Muscle 11:4. https://doi.org/10.1186/s13395-020-00259-w

    Article  PubMed  PubMed Central  Google Scholar 

  27. Nelke C, Dziewas R, Minnerup J, Meuth SG, Ruck T (2019) Skeletal muscle as potential central link between sarcopenia and immune senescence. EBioMedicine 49:381–388. https://doi.org/10.1016/j.ebiom.2019.10.034

    Article  PubMed  PubMed Central  Google Scholar 

  28. Nosacka RL, Delitto AE, Delitto D, Patel R, Judge SM, Trevino JG, Judge AR (2020) Distinct cachexia profiles in response to human pancreatic tumours in mouse limb and respiratory muscle. J Cachexia Sarcopenia Muscle 11:820–837. https://doi.org/10.1002/jcsm.12550

    Article  PubMed  PubMed Central  Google Scholar 

  29. Rocheteau P, Chatre L, Briand D, Mebarki M, Jouvion G, Bardon J, Crochemore C, Serrani P, Lecci PP, Latil M, Matot B, Carlier PG, Latronico N, Huchet C, Lafoux A, Sharshar T, Ricchetti M, Chretien F (2015) Sepsis induces long-term metabolic and mitochondrial muscle stem cell dysfunction amenable by mesenchymal stem cell therapy. Nat Commun 6:10145. https://doi.org/10.1038/ncomms10145

    Article  CAS  PubMed  Google Scholar 

  30. Schaarschmidt G, Wegner F, Schwarz SC, Schmidt H, Schwarz J (2009) Characterization of voltage-gated potassium channels in human neural progenitor cells. PLoS ONE 4:e6168. https://doi.org/10.1371/journal.pone.0006168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Serrano-Novillo C, Capera J, Colomer-Molera M, Condom E, Ferreres JC, Felipe A (2019) Implication of voltage-gated potassium channels in neoplastic cell proliferation. Cancers (Basel) 11https://doi.org/10.3390/cancers11030287

  32. Shenoy A, Blelloch RH (2014) Regulation of microRNA function in somatic stem cell proliferation and differentiation. Nat Rev Mol Cell Biol 15:565–576. https://doi.org/10.1038/nrm3854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Shi YJ, Hu SJ, Zhao QQ, Liu XS, Liu C, Wang H (2019) Toll-like receptor 4 (TLR4) deficiency aggravates dextran sulfate sodium (DSS)-induced intestinal injury by down-regulating IL6, CCL2 and CSF3. Ann Transl Med 7:713. https://doi.org/10.21037/atm.2019.12.28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Souza PPC, Lerner UH (2019) Finding a Toll on the route: the fate of osteoclast progenitors after Toll-like receptor activation. Front Immunol 10:1663. https://doi.org/10.3389/fimmu.2019.01663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Su LD, Xie YJ, Zhou L, Shen Y, Hu YH (2015) LGI1 is involved in the development of mouse brain. Cerebellum 14:12–14. https://doi.org/10.1007/s12311-014-0628-6

    Article  CAS  PubMed  Google Scholar 

  36. Usas A, Maciulaitis J, Maciulaitis R, Jakuboniene N, Milasius A, Huard J (2011) Skeletal muscle-derived stem cells: implications for cell-mediated therapies. Medicina (Kaunas) 47:469–479

    Article  Google Scholar 

  37. Wang L, Luo L, Zhao W, Yang K, Shu G, Wang S, Gao P, Zhu X, Xi Q, Zhang Y, Jiang Q, Wang L (2018) Lauric acid accelerates glycolytic muscle fiber formation through TLR4 signaling. J Agric Food Chem 66:6308–6316. https://doi.org/10.1021/acs.jafc.8b01753

    Article  CAS  PubMed  Google Scholar 

  38. Xu J, Benabou K, Cui X, Madia M, Tzeng E, Billiar T, Watkins S, Sachdev U (2015) TLR4 deters perfusion recovery and upregulates Toll-like receptor 2 (TLR2) in ischemic skeletal muscle and endothelial cells. Mol Med 21:605–615. https://doi.org/10.2119/molmed.2014.00260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Xu J, Lu MX, Cui YD, Du YZ (2017) Selection and evaluation of reference genes for expression analysis using qRT-PCR in Chilo suppressalis (Lepidoptera: Pyralidae). J Econ Entomol 110:683–691. https://doi.org/10.1093/jee/tow297

    Article  CAS  PubMed  Google Scholar 

  40. Yamagata A, Fukai S (2020) Insights into the mechanisms of epilepsy from structural biology of LGI1-ADAM22. Cell Mol Life Sci 77:267–274. https://doi.org/10.1007/s00018-019-03269-0

    Article  CAS  PubMed  Google Scholar 

  41. Zhang H, Liu D, Wang X, Chen X, Long Y, Chai W, Zhou X, Rui X, Zhang Q, Wang H, Yang Q (2013) Melatonin improved rat cardiac mitochondria and survival rate in septic heart injury. J Pineal Res 55:1–6. https://doi.org/10.1111/jpi.12033

    Article  CAS  PubMed  Google Scholar 

  42. Zhu Y, Li Q, Zhou Y, Li W (2019) TLR activation inhibits the osteogenic potential of human periodontal ligament stem cells through Akt signaling in a Myd88- or TRIF-dependent manner. J Periodontol 90:400–415. https://doi.org/10.1002/JPER.18-0251

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Haiying Tao and Hai Tao designed the study. Xiaoyan Tang and Hai Tao collated the data, carried out data analyses, and produced the initial draft of the manuscript. Haiying Tao and Xiaoyan Tang contributed to drafting the manuscript. All authors have read and approved the final submitted manuscript. The authors declare that all data were generated in-house and that no paper mill was used.

Corresponding author

Correspondence to Hai Tao.

Ethics declarations

Ethics approval

Animal use and experimental procedures were carried out with the approval of the Experimental Animal Ethics Committee of Renmin Hospital of Wuhan University (approval number: 202011-A-035). Animal operating procedures were in line with the US National Institutes of Health (NIH) laboratory animal care and usage guidelines.

Consent to participate

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Haiying Tao and Xiaoyan Tang are co-first authors.

Key points

• LPS-induced TLR4 activation inhibits the LGI1 expression in SMSCs.

• TLR4 activation reduces SMSC proliferation-related gene expression.

• TLR4 activation hinders the osteogenic differentiation of SMSCs.

• TLR4 activation inhibits the sphere formation ability of SMSCs.

• This study provides a potential therapeutic target against diseases related to SMSCs.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 24.7 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tao, H., Tang, X. & Tao, H. TLR4 activation inhibits the proliferation and osteogenic differentiation of skeletal muscle stem cells by downregulating LGI1. J Physiol Biochem 78, 667–678 (2022). https://doi.org/10.1007/s13105-022-00888-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13105-022-00888-3

Keywords

Navigation