Skip to main content

Advertisement

Log in

CTRP15 promotes macrophage cholesterol efflux and attenuates atherosclerosis by increasing the expression of ABCA1

  • Original Article
  • Published:
Journal of Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

C1q tumor necrosis factor–related protein 15 (CTRP15), a newly identified myokine, is closely implicated in cardiovascular disease. However, the role of CTRP15 in atherosclerosis is still unclear. This study aims to determine the role of CTRP15 in atherosclerosis and explore the underlying mechanisms. Our findings revealed that lentivirus-mediated CTRP15 overexpression significantly decreased atherosclerotic plaque lesions and increased reverse cholesterol transport (RCT) efficiency and circulating HDL-C levels in apolipoprotein E-deficient (apoE−/−) mice. Consistently, in vitro, overexpression of CTRP15 also inhibited intracellular lipid accumulation and promoted cholesterol efflux from macrophages. Mechanistically, CTRP15 decreased the expression of miR-101-3p by upregulating T-cadherin, thereby facilitating ABCA1 expression and cholesterol efflux. In summary, these data indicate that CTRP15 inhibits the development of atherosclerosis by enhancing RCT efficiency and increasing plasma HDL-C levels via the T-cadherin/miR-101-3p/ABCA1 pathway. Targeting CTRP15 may serve as a novel and promising therapeutic strategy for atherosclerotic cardiovascular diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

CTRP15:

C1q tumor necrosis factor-related protein 15

ApoE−/− :

Apolipoprotein E-deficient

CAD:

Coronary artery disease

PBS:

Phosphate-buffered saline

ApoA-I:

Apolipoprotein A-I

LV-NC:

Lentiviral empty vector

HDL:

High-density lipoprotein

TGFβ1:

Transforming growth factor-β1

TNF-α:

Tumor necrosis factor alpha

OCT:

Optimal cutting temperature

LDL-C:

LDL cholesterol

AdipoR1:

Adiponectin receptor 1

RCT:

Reverse cholesterol transport

PBS:

Phosphate-buffered saline

MPMs:

Mouse peritoneal macrophages

H&E:

Hematoxylin and eosin

ABCA1:

ATP-binding cassette transporter A1

TG:

Triglyceride

miRNAs:

MicroRNAs

TC:

Total cholesterol

IL-6:

Interleukin-6

HDL-C:

HDL-cholesterol

ac-LDL:

Acetylated-LDL

HPLC:

High-performance liquid chromatography

References

  1. Adorni MP, Zimetti F, Billheimer JT, Wang N, Rader DJ, Phillips MC, Rothblat GH (2007) The roles of different pathways in the release of cholesterol from macrophages. J Lipid Res 48(11):2453–2462. https://doi.org/10.1194/jlr.M700274-JLR200

    Article  CAS  PubMed  Google Scholar 

  2. Ahmadi R, Fadaei R, Shokoohi Nahrkhalaji A, Panahi G, Fallah S (2021) The impacts of C1q/TNF-related protein-15 and adiponectin on Interleukin-6 and tumor necrosis factor-α in primary macrophages of patients with coronary artery diseases. Cytokine 142:155470. https://doi.org/10.1016/j.cyto.2021.155470

    Article  CAS  PubMed  Google Scholar 

  3. Brodersen P, Voinnet O (2009) Revisiting the principles of microRNA target recognition and mode of action. Nat Rev Mol Cell Biol 10(2):141–148. https://doi.org/10.1038/nrm2619

    Article  CAS  PubMed  Google Scholar 

  4. Cai Y, Liu J, Cai SK, Miao EY, Jia CQ, Fan YZ, Li YB (2020) Eicosapentaenoic acid’s metabolism of 15-LOX-1 promotes the expression of miR-101 thus inhibits Cox2 pathway in colon cancer. Onco Targets Ther 13:5605–5616. https://doi.org/10.2147/ott.S237562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Cao S, Li L, Geng X, Ma Y, Huang X, Kang X (2019) The upregulation of miR-101 promotes vascular endothelial cell apoptosis and suppresses cell migration in acute coronary syndrome by targeting CDH5. Int J Clin Exp Pathol 12(9):3320–3328

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Castaño C, Kalko S, Novials A, Párrizas M (2018) Obesity-associated exosomal miRNAs modulate glucose and lipid metabolism in mice. Proc Natl Acad Sci U S A 115(48):12158–12163. https://doi.org/10.1073/pnas.1808855115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Chen Q, Li X, Kong L, Xu Q, Wang Z, Lv Q (2020) miR-101-3p induces vascular endothelial cell dysfunction by targeting tet methylcytosine dioxygenase 2. Acta Biochim Biophys Sin (Shanghai) 52(2):180–191. https://doi.org/10.1093/abbs/gmz154

    Article  CAS  Google Scholar 

  8. de Villiers WJ, Smart EJ (1999) Macrophage scavenger receptors and foam cell formation. J Leukoc Biol 66(5):740–746. https://doi.org/10.1002/jlb.66.5.740

    Article  PubMed  Google Scholar 

  9. Denzel MS, Scimia MC, Zumstein PM, Walsh K, Ruiz-Lozano P, Ranscht B (2010) T-cadherin is critical for adiponectin-mediated cardioprotection in mice. J Clin Invest 120(12):4342–4352. https://doi.org/10.1172/jci43464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Fujishima Y, Maeda N, Matsuda K, Masuda S, Mori T, Fukuda S, …, Shimomura I (2017) Adiponectin association with T-cadherin protects against neointima proliferation and atherosclerosis. Faseb J 31(4):1571-1583.https://doi.org/10.1096/fj.201601064R

  11. Gelissen IC, Harris M, Rye KA, Quinn C, Brown AJ, Kockx M, …, Jessup W (2006) ABCA1 and ABCG1 synergize to mediate cholesterol export to apoA-I. Arterioscler Thromb Vasc Biol 26(3):534-540.https://doi.org/10.1161/01.ATV.0000200082.58536.e1

  12. Gordon DJ, Probstfield JL, Garrison RJ, Neaton JD, Castelli WP, Knoke JD, …, Tyroler HA (1989) High-density lipoprotein cholesterol and cardiovascular disease. Four prospective American studies. Circulation 79(1):8-15.https://doi.org/10.1161/01.cir.79.1.8

  13. Huntzinger E, Izaurralde E (2011) Gene silencing by microRNAs: contributions of translational repression and mRNA decay. Nat Rev Genet 12(2):99–110. https://doi.org/10.1038/nrg2936

    Article  CAS  PubMed  Google Scholar 

  14. Iwabu M, Okada-Iwabu M, Yamauchi T, Kadowaki T (2015) Adiponectin/adiponectin receptor in disease and aging. NPJ Aging Mech Dis 1:15013. https://doi.org/10.1038/npjamd.2015.13

    Article  PubMed  PubMed Central  Google Scholar 

  15. Katsanidis E, Addis PB (1999) Novel HPLC analysis of tocopherols, tocotrienols, and cholesterol in tissue. Free Radic Biol Med 27(11–12):1137–1140. https://doi.org/10.1016/s0891-5849(99)00205-1

    Article  CAS  PubMed  Google Scholar 

  16. Lake NJ, Taylor RL, Trahair H, Harikrishnan KN, Curran JE, Almeida M, …, Bozaoglu K (2017) TRAK2, a novel regulator of ABCA1 expression, cholesterol efflux and HDL biogenesis. Eur Heart J 38(48):3579-3587.https://doi.org/10.1093/eurheartj/ehx315

  17. Li H, Yu XH, Ou X, Ouyang XP, Tang CK (2021) Hepatic cholesterol transport and its role in non-alcoholic fatty liver disease and atherosclerosis. Prog Lipid Res 83:101109. https://doi.org/10.1016/j.plipres.2021.101109

    Article  CAS  PubMed  Google Scholar 

  18. Li J, Li Y, Wang Y, He X, Wang J, Cai W, …, Hu D (2021) Overexpression of miR-101 suppresses collagen synthesis by targeting EZH2 in hypertrophic scar fibroblasts. Burns Trauma 9:tkab038. https://doi.org/10.1093/burnst/tkab038

  19. Li K, Liao X, Wang K, Mi Q, Zhang T, Jia Y, …, Yang G (2018). Myonectin predicts the development of type 2 diabetes. J Clin Endocrinol Metab 103(1):139-147.https://doi.org/10.1210/jc.2017-01604

  20. Liu P, Ye F, Xie X, Li X, Tang H, Li S, …, Xie X (2016) mir-101-3p is a key regulator of tumor metabolism in triple negative breast cancer targeting AMPK. Oncotarget 7(23):35188-35198.https://doi.org/10.18632/oncotarget.9072

  21. Liu Y, Zhong Y, Chen H, Wang D, Wang M, Ou JS, Xia M (2017) Retinol-binding protein-dependent cholesterol uptake regulates macrophage foam cell formation and promotes atherosclerosis. Circulation 135(14):1339–1354. https://doi.org/10.1161/circulationaha.116.024503

    Article  CAS  PubMed  Google Scholar 

  22. Nishimoto H, Yamamoto A, Furukawa S, Wakisaka S, Maeda T (2017) C1q/TNF-related protein 3 expression and effects on adipocyte differentiation of 3T3-L1 cells. Cell Biol Int 41(2):197–203. https://doi.org/10.1002/cbin.10674

    Article  CAS  PubMed  Google Scholar 

  23. Ohashi R, Mu H, Wang X, Yao Q, Chen C (2005) Reverse cholesterol transport and cholesterol efflux in atherosclerosis. QJM 98(12):845–856. https://doi.org/10.1093/qjmed/hci136

    Article  CAS  PubMed  Google Scholar 

  24. Otaka N, Shibata R, Ohashi K, Uemura Y, Kambara T, Enomoto T, …, Ouchi N (2018) Myonectin is an exercise-induced myokine that protects the heart from ischemia-reperfusion injury. Circ Res 123(12):1326-1338.https://doi.org/10.1161/circresaha.118.313777

  25. Ou X, Gao JH, He LH, Yu XH, Wang G, Zou J, …, Tang CK (2020) Angiopoietin-1 aggravates atherosclerosis by inhibiting cholesterol efflux and promoting inflammatory response. Biochim Biophys Acta Mol Cell Biol Lipids 1865(2):158535.https://doi.org/10.1016/j.bbalip.2019.158535

  26. Park TJ, Park A, Kim J, Kim JY, Han BS, Oh KJ, …, Kim WK (2021) Myonectin inhibits adipogenesis in 3T3-L1 preadipocytes by regulating p38 MAPK pathway. BMB Rep 54(2):124-129.https://doi.org/10.5483/BMBRep.2021.54.2.262

  27. Schäffler A, Buechler C (2012) CTRP family: linking immunity to metabolism. Trends Endocrinol Metab 23(94):194–204. https://doi.org/10.1016/j.tem.2011.12.003

    Article  CAS  PubMed  Google Scholar 

  28. Schäffler A, Schölmerich J, Salzberger B (2007) Adipose tissue as an immunological organ: Toll-like receptors, C1q/TNFs and CTRPs. Trends Immunol 28(9):393–399. https://doi.org/10.1016/j.it.2007.07.003

    Article  CAS  PubMed  Google Scholar 

  29. Seldin MM, Peterson JM, Byerly MS, Wei Z, Wong GW (2012) Myonectin (CTRP15), a novel myokine that links skeletal muscle to systemic lipid homeostasis. J Biol Chem 287(15):11968–11980. https://doi.org/10.1074/jbc.M111.336834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Seldin MM, Tan SY, Wong GW (2014) Metabolic function of the CTRP family of hormones. Rev Endocr Metab Disord 15(2):111–123. https://doi.org/10.1007/s11154-013-9255-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Shokoohi Nahrkhalaji A, Ahmadi R, Fadaei R, Panahi G, Razzaghi M, Fallah S (2019) Higher serum level of CTRP15 in patients with coronary artery disease is associated with disease severity, body mass index and insulin resistance. Arch Physiol Biochem:1-5.https://doi.org/10.1080/13813455.2019.1675713

  32. Si Y, Fan W, Sun L (2020) A review of the relationship between CTRP family and coronary artery disease. Curr Atheroscler Rep 22(6):22. https://doi.org/10.1007/s11883-020-00840-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wang M, Wang D, Zhang Y, Wang X, Liu Y, Xia M (2013) Adiponectin increases macrophages cholesterol efflux and suppresses foam cell formation in patients with type 2 diabetes mellitus. Atherosclerosis 229(1):62–70. https://doi.org/10.1016/j.atherosclerosis.2013.01.017

    Article  CAS  PubMed  Google Scholar 

  34. Weber C, Noels H (2011) Atherosclerosis: current pathogenesis and therapeutic options. Nat Med 17(11):1410–1422. https://doi.org/10.1038/nm.2538

    Article  CAS  PubMed  Google Scholar 

  35. Xin Y, Tang L, Chen J, Chen D, Wen W, Han F (2021) Inhibition of miR-101-3p protects against sepsis-induced myocardial injury by inhibiting MAPK and NF‑κB pathway activation via the upregulation of DUSP1. Int J Mol Med 47(3).https://doi.org/10.3892/ijmm.2021.4853

  36. Yang Z, Cappello T, Wang L (2015) Emerging role of microRNAs in lipid metabolism. Acta Pharm Sin B 5(2):145–150. https://doi.org/10.1016/j.apsb.2015.01.002

    Article  PubMed  PubMed Central  Google Scholar 

  37. Zhang Y, Liu C, Liu J, Guo R, Yan Z, Liu W, …, Wang Y (2020). Implications of C1q/TNF-related protein superfamily in patients with coronary artery disease. Sci Rep 10(1):878.https://doi.org/10.1038/s41598-020-57877-z

  38. Zhao Q, Zhang CL, Xiang RL, Wu LL, Li L (2020) CTRP15 derived from cardiac myocytes attenuates TGFβ1-induced fibrotic response in cardiac fibroblasts. Cardiovasc Drugs Ther 34(5):591–604. https://doi.org/10.1007/s10557-020-06970-6

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was supported by the Hunan Natural Science Fund-Youth Foundation Project (No. 2021JJ40500) and the Scientific Research Project of the Hunan Health Commission (No. 20200410).

Author information

Authors and Affiliations

Authors

Contributions

Zhi-Lu Sun conceived and designed the experiments. Wei-Hua Tan, Zheng-Liang Peng, and Ting You performed the experiments. Wei-Hua Tan drafted and wrote the manuscript. Zheng-Liang Peng and Ting You analyzed the data. Zhi-Lu Sun provided materials and reagents. Final approval of manuscript: all authors. The authors declare that all data were generated in-house and that no paper mill was used.

Corresponding author

Correspondence to Zhi-Lu Sun.

Ethics declarations

Ethics approval

This study was approved by the Animal Ethics Committee of the University of South China.

Conflict of interest

The authors declare no competing interests.

Research involving human participants and/or animals

Animals.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Key points

1. CTRP15 inhibits atherosclerosis by promoting RCT and macrophage cholesterol efflux in apoE−/− mice.

2. CTRP15 upregulates ABCA1 expression and cholesterol efflux through downregulating the expression of miR-101-3p.

3. T-cadherin is required for the effect of CTRP15 on ABCA1 expression.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 251 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, WH., Peng, ZL., You, T. et al. CTRP15 promotes macrophage cholesterol efflux and attenuates atherosclerosis by increasing the expression of ABCA1. J Physiol Biochem 78, 653–666 (2022). https://doi.org/10.1007/s13105-022-00885-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13105-022-00885-6

Keywords

Navigation