Skip to main content
Log in

Temporal specificity of IL-6 knockout in enhancing the thermogenic capability of brown adipose tissue

  • Original Article
  • Published:
Journal of Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

Although interleukin-6 (IL-6) has been regarded as a homeostatic regulator of fat metabolism, its role in brown adipose thermogenesis remains to be further clarified. By using wild-type (WT) and IL-6-knockout (KO) mice, this study aims to investigate whether IL-6 regulates the thermogenic capability of brown adipose tissue (BAT) at both young and elderly stages. We demonstrated that IL-6 KO enhances BAT thermogenesis at a young age, as evidenced by the increased mRNA and protein expression levels of thermogenic genes, and the elevated interscapular surface temperature. The IL-6-KO enhancement of BAT thermogenesis is associated with improved respiratory exchange ratio (RER) and glucose homeostasis at young stages. However, these improvements disappear in elderly KO mice, which is likely attributable to the highly increased expression of other inflammatory cytokines, such as Tnfα, Il-1β, and Il-10. Our findings indicate that the lack of IL-6 has a temporal-specific contribution to the promotion of BAT thermogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Caballero B (2019) Humans against obesity: who will win? Adv Nutr 10:S4–S9. https://doi.org/10.1093/advances/nmy055

    Article  PubMed  PubMed Central  Google Scholar 

  2. Afshin A, Forouzanfar MH, Reitsma MB, Sur P, Estep K, Lee A, Marczak L, Mokdad AH, Moradi-Lakeh M, Naghavi M, Salama JS, Vos T, Abate KH, Abbafati C et al (2017) Health effects of overweight and obesity in 195 countries over 25 years. N Engl J Med 377:13–27. https://doi.org/10.1056/NEJMoa1614362

    Article  PubMed  Google Scholar 

  3. Rosen ED, Spiegelman BM (2014) What we talk about when we talk about fat. Cell 156:20–44. https://doi.org/10.1016/j.cell.2013.12.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Poekes L, Lanthier N, Leclercq IA (2015) Brown adipose tissue: a potential target in the fight against obesity and the metabolic syndrome. Clin Sci (Lond) 129:933–949. https://doi.org/10.1042/CS20150339

    Article  CAS  Google Scholar 

  5. Bartelt A, Heeren J (2014) Adipose tissue browning and metabolic health. Nat Rev Endocrinol 10:24–36. https://doi.org/10.1038/nrendo.2013.204

    Article  CAS  PubMed  Google Scholar 

  6. Boon MR, van MarkenLichtenbelt WD (2016) Brown adipose tissue: a human perspective. Handb Exp Pharmacol 233:301–319. https://doi.org/10.1007/164_2015_11

    Article  CAS  PubMed  Google Scholar 

  7. Fenzl A, Kiefer FW (2014) Brown adipose tissue and thermogenesis. Horm Mol Biol Clin Investig 19:25–37. https://doi.org/10.1515/hmbci-2014-0022

    Article  CAS  PubMed  Google Scholar 

  8. Fernández-Verdejo R, Marlatt KL, Ravussin E, Galgani JE (2019) Contribution of brown adipose tissue to human energy metabolism. Mol Aspects Med 68:82–89. https://doi.org/10.1016/j.mam.2019.07.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Porter C (2017) Quantification of UCP1 function in human brown adipose tissue. Adipocyte 6:67–174. https://doi.org/10.1080/21623945.2017.1319535

    Article  CAS  Google Scholar 

  10. Richard MA, Pallubinsky H, Blondin DP (2020) Functional characterization of human brown adipose tissue metabolism. Biochem J 477:1261–1286. https://doi.org/10.1042/BCJ20190464

    Article  CAS  PubMed  Google Scholar 

  11. Chawla A, Nguyen KD, Goh YP (2011) Macrophage-mediated inflammation in metabolic disease. Nat Rev Immunol 11:738–749. https://doi.org/10.1038/nri3071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Coppack SW (2001) Pro-inflammatory cytokines and adipose tissue. Proc Nutr Soc 60:349–356. https://doi.org/10.1079/pns2001110

    Article  CAS  PubMed  Google Scholar 

  13. Villarroya F, Cereijo R, Gavaldà-Navarro A, Villarroya J, Giralt M (2018) Inflammation of brown/beige adipose tissues in obesity and metabolic disease. J Intern Med 284:492–504. https://doi.org/10.1111/joim.12803

    Article  CAS  PubMed  Google Scholar 

  14. Alcalá M, Calderon-Dominguez M, Bustos E, Ramos P, Casals N, Serra D, Viana M, Herrero L (2017) Increased inflammation, oxidative stress and mitochondrial respiration in brown adipose tissue from obese mice. Sci Rep 7:16082. https://doi.org/10.1038/s41598-017-16463-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wallenius V, Wallenius K, Ahrén B, Rudling M, Carlsten H, Dickson SL, Ohlsson C, Jansson JO (2002) Interleukin-6-deficient mice develop mature-onset obesity. Nat Med 8:75–79. https://doi.org/10.1038/nm0102-75

    Article  CAS  PubMed  Google Scholar 

  16. Timper K, Denson JL, Steculorum SM, Heilinger C, Engström-Ruud L, Wunderlich CM, Rose-John S, Wunderlich FT, Brüning JC (2017) IL-6 improves energy and glucose homeostasis in obesity via enhanced central IL-6 trans-signaling. Cell Rep 19:267–280. https://doi.org/10.1016/j.celrep.2017.03.043

    Article  CAS  PubMed  Google Scholar 

  17. Kristóf E, Klusóczki Á, Veress R, Shaw A, Combi ZS, Varga K, Győry F, Balajthy Z, Bai P, Bacso Z, Fésüs L (2019) Interleukin-6 released from differentiating human beige adipocytes improves browning. Exp Cell Res 377:47–55. https://doi.org/10.1016/j.yexcr.2019.02.015

    Article  CAS  PubMed  Google Scholar 

  18. Qing H, Desrouleaux R, Israni-Winger K, Mineur YS, Fogelman N, Zhang C, Rashed S, Palm NW, Sinha R, Picciotto MR, Perry RJ, Wang A (2020) Origin and function of stress-induced IL-6 in murine models. Cell 182:1660. https://doi.org/10.1016/j.cell.2020.08.044

    Article  CAS  PubMed  Google Scholar 

  19. Matthews VB, Allen TL, Risis S, Chan MH, Henstridge DC, Watson N, Zaffino LA, Babb JR, Boon J, Meikle PJ, Jowett JB, Watt MJ, Jansson JO, Bruce CR, Febbraio MA (2010) Interleukin-6-deficient mice develop hepatic inflammation and systemic insulin resistance. Diabetologia 53:2431–2441. https://doi.org/10.1007/s00125-010-1865-y

    Article  CAS  PubMed  Google Scholar 

  20. Mauer J, Chaurasia B, Goldau J, Vogt MC, Ruud J, Nguyen KD, Theurich S, Hausen AC, Schmitz J, Brönneke HS, Estevez E, Allen TL, Mesaros A, Partridge L, Febbraio MA et al (2014) Signaling by IL-6 promotes alternative activation of macrophages to limit endotoxemia and obesity-associated resistance to insulin. Nat Immunol 15:423–430. https://doi.org/10.1038/ni.2865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Li G, Klein RL, Matheny M, King MA, Meyer EM, Scarpace PJ (2002) Induction of uncoupling protein 1 by central interleukin-6 gene delivery is dependent on sympathetic innervation of brown adipose tissue and underlies one mechanism of body weight reduction in rats. Neuroscience 115:879–889. https://doi.org/10.1016/s0306-4522(02)00447-5

    Article  CAS  PubMed  Google Scholar 

  22. Mishra D, Richard JE, Maric I, Porteiro B, Häring M, Kooijman S, Musovic S, Eerola K, López-Ferreras L, Peris E, Grycel K, Shevchouk OT, Micallef P, Olofsson CS, Wernstedt Asterholm I et al (2019) Parabrachial interleukin-6 reduces body weight and food intake and increases thermogenesis to regulate energy metabolism. Cell Rep 26:3011–3026. https://doi.org/10.1016/j.celrep.2019.02.044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Xu E, Pereira M, Karakasilioti I, Theurich S, Al-Maarri M, Rappl G, Waisman A, Wunderlich FT, Brüning JC (2017) Temporal and tissue-specific requirements for T-lymphocyte IL-6 signalling in obesity-associated inflammation and insulin resistance. Nat Commun 8:14803. https://doi.org/10.1038/ncomms14803

    Article  PubMed  PubMed Central  Google Scholar 

  24. Theurich S, Tsaousidou E, Hanssen R, Lempradl AM, Mauer J, Timper K, Schilbach K, Folz-Donahue K, Heilinger C, Sexl V, Pospisilik JA, Wunderlich FT, Brüning JC (2017) IL-6/Stat3-dependent induction of a distinct, obesity-associated NK cell subpopulation deteriorates energy and glucose homeostasis. Cell Metab 26:171–184. https://doi.org/10.1016/j.cmet.2017.05.018

    Article  CAS  PubMed  Google Scholar 

  25. DeFuria J, Belkina AC, Jagannathan-Bogdan M, Snyder-Cappione J, Carr JD, Nersesova YR, Markham D, Strissel KJ, Watkins AA, Zhu M, Allen J, Bouchard J, Toraldo G, Jasuja R, Obin MS et al (2013) B cells promote inflammation in obesity and type 2 diabetes through regulation of T-cell function and an inflammatory cytokine profile. Proc Natl Acad Sci U S A 110:5133–5138. https://doi.org/10.1073/pnas.1215840110

    Article  PubMed  PubMed Central  Google Scholar 

  26. Omran F, Christian M (2020) Inflammatory signaling and brown fat activity. Front Endocrinol (Lausanne) 11:156. https://doi.org/10.3389/fendo.2020.00156

    Article  Google Scholar 

  27. Rebiger L, Lenzen S, Mehmeti I (2016) Susceptibility of brown adipocytes to pro-inflammatory cytokine toxicity and reactive oxygen species. Biosci Rep 36:e00306. https://doi.org/10.1042/BSR20150193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zhang Q, He M, Deng C, Wang H, Huang XF (2014) Effects of olanzapine on the elevation of macrophage infiltration and pro-inflammatory cytokine expression in female rats. J Psychopharmacol 28:1161–1169. https://doi.org/10.1177/0269881114555250

    Article  CAS  PubMed  Google Scholar 

  29. Cawthorn WP, Sethi JK (2008) TNF-alpha and adipocyte biology. FEBS lett 582:117–131. https://doi.org/10.1016/j.febslet.2007.11.051

    Article  CAS  PubMed  Google Scholar 

  30. Valladares A, Roncero C, Benito M, Porras A (2001) TNF-alpha inhibits UCP-1 expression in brown adipocytes via ERKs. Opposite effect of p38 MAPK. FEBS lett 493:6–11. https://doi.org/10.1016/s0014-5793(01)02264-5

    Article  CAS  PubMed  Google Scholar 

  31. Goto T, Naknukool S, Yoshitake R, Hanafusa Y, Tokiwa S, Li Y, Sakamoto T, Nitta T, Kim M, Takahashi N, Yu R, Daiyasu H, Seno S, Matsuda H, Kawada T (2016) Proinflammatory cytokine interleukin-1β suppresses cold-induced thermogenesis in adipocytes. Cytokine 77:107–114. https://doi.org/10.1016/j.cyto.2015.11.001

    Article  CAS  PubMed  Google Scholar 

  32. Rajbhandari P, Thomas BJ, Feng AC, Hong C, Wang J, Vergnes L, Sallam T, Wang B, Sandhu J, Seldin MM, Lusis AJ, Fong LG, Katz M, Lee R, Young SG et al (2018) IL-10 signaling remodels adipose chromatin architecture to limit thermogenesis and energy expenditure. Cell 172:218–233. https://doi.org/10.1016/j.cell.2017.11.019

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the grant from the Construction Engineering Special Fund of “Taishan Scholars” (No. 201511023, 201712022), the National Key Research and Development Program of China (2017YFE0129800), Funds of Shandong “Double Tops” Program, the Natural Science Foundation of Shandong Province, China (No. ZR2019MC016), and the Program for Scientific Research Innovation Team of Young Scholar in Colleges and Universities of Shandong Province (2019KJE009).

Author information

Authors and Affiliations

Authors

Contributions

Mei Dong, Cheng Gao, and Yanxin Jia performed experiments, wrote the manuscript, organized the literature and figures. Weijia Xu, Yan Liu, and Xin Wen performed experiments and contributed to discussion. Haifang Li, Hai Lin, and Qingxin Liu conceived the project, led and supervised the study, and reviewed/edited the manuscript. The authors declare that all data were generated in-house and that no paper mill was used.

Corresponding authors

Correspondence to Qingxin Liu, Hai Lin or Haifang Li.

Ethics declarations

Declarations

The authors declare no competing interests.

Research involving human participants and/or animals

This manuscript does not contain clinical studies or patient data. The experimental protocol with mice was approved by the Animal Care and Use Committee of Shandong Agricultural University.

Consent for publication

All authors revised the manuscript and approved the version to be published.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Key points

• IL-6 KO enhances brown fat thermogenesis in young mice.

• IL-6 KO improves RER and glucose homeostasis in young mice.

• The thermogenic and metabolic improvements disappear in elderly IL-6-KO mice.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, M., Gao, C., Jia, Y. et al. Temporal specificity of IL-6 knockout in enhancing the thermogenic capability of brown adipose tissue. J Physiol Biochem 78, 619–628 (2022). https://doi.org/10.1007/s13105-021-00847-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13105-021-00847-4

Keywords

Navigation