Skip to main content

Advertisement

Log in

Extracellular vesicles and exosome: insight from physiological regulatory perspectives

  • Review
  • Published:
Journal of Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

The current study highlights prospective mechanisms of biogenesis of extracellular vesicles (EVs) and potential involvement in cellular signaling and transport with great emphasis to illustrate their role as biomarkers in certain pathologies. The current review highlights EVs, the heterogeneous entities secreted by cells in highly conserved manner. A series of consensus terminologies for various types is yet to be organized. Exosomes, microvesicles and apoptotic bodies are major populations among EVs. EVs are key regulators in cellular physiological homeostasis, disease progression and evolve either from plasma membrane (microvesicles) or fusion of endosomes with exosomes. However, how vesicular inclusions elicit a plethora of biological responses is still not much clear. However, how these vesicular inclusions get packaged and delivered by these EVs shows great involvement in inter- and intracellular cellular signaling and channeling of multiple proteins, variety of RNAs and certain fat molecules. It’s worth to mention that EVs carry small non-coding RNAs (snRNAs) which are involved in multiple cellular molecular events at targeted sites. Moreover, snRNA trafficking through exosomes and microvesicles depicts remarkable potential as non-invasive biomarkers in different clinical disorders especially immune system pathologies, cardiovascular issues, and metabolic syndromes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable.

References

  1. Andaloussi SE, Mäger I, Breakefield XO, Wood MJ (2013) Extracellular vesicles: biology and emerging therapeutic opportunities. Nat Rev Drug Discovery 12(5):347

    Article  CAS  Google Scholar 

  2. Harding C, Heuser J, Stahl P (1984) Endocytosis and intracellular processing of transferrin and colloidal gold-transferrin in rat reticulocytes: demonstration of a pathway for receptor shedding. Eur J Cell Biol 35(2):256–263

    CAS  PubMed  Google Scholar 

  3. Jan AT, Rahman S, Badierah R, Lee EJ, Mattar E, Redwan EM, Choi I (2021) Expedition into exosome biology: a perspective of progress from discovery to therapeutic development. Cancers 13(5):1157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lee Y, El Andaloussi S, Wood MJ (2012) Exosomes and microvesicles: extracellular vesicles for genetic information transfer and gene therapy. Hum Mol Genet 21(R1):R125–R134

    Article  CAS  PubMed  Google Scholar 

  5. Atkin-Smith GK, Poon IK (2017) Disassembly of the dying: mechanisms and functions. Trends Cell Biol 27(2):151–162

    Article  CAS  PubMed  Google Scholar 

  6. Poon IK, Lucas CD, Rossi AG, Ravichandran KS (2014) Apoptotic cell clearance: basic biology and therapeutic potential. Nat Rev Immunol 14(3):166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Théry C, Ostrowski M, Segura E (2009) Membrane vesicles as conveyors of immune responses. Nat Rev Immunol 9(8):581

    Article  PubMed  CAS  Google Scholar 

  8. Di Vizio D, Kim J, Hager MH, Morello M, Yang W, Lafargue CJ, Beroukhim R (2009) Oncosome formation in prostate cancer: association with a region of frequent chromosomal deletion in metastatic disease. Can Res 69(13):5601–5609

    Article  CAS  Google Scholar 

  9. Deatherage BL, Cookson BT (2012) Membrane vesicle release in bacteria, eukaryotes, and archaea: a conserved yet underappreciated aspect of microbial life. Infect Immun 80(6):1948–1957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kuehn MJ, Kesty NC (2005) Bacterial outer membrane vesicles and the host–pathogen interaction. Genes Dev 19(22):2645–2655

    Article  CAS  PubMed  Google Scholar 

  11. Bobrie A, Colombo M, Raposo G, Théry C (2011) Exosome secretion: molecular mechanisms and roles in immune responses. Traffic 12(12):1659–1668

    Article  CAS  PubMed  Google Scholar 

  12. Bukong TN, Momen-Heravi F, Kodys K, Bala S, Szabo G (2014) Exosomes from hepatitis C infected patients transmit HCV infection and contain replication competent viral RNA in complex with Ago2-miR122-HSP90. PLoS pathogens 10(10):e1004424

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Mittelbrunn M, Gutiérrez-Vázquez C, Villarroya-Beltri C, González S, Sánchez-Cabo F, González MÁ, Sánchez-Madrid F (2011) Unidirectional transfer of microRNA-loaded exosomes from T cells to antigen-presenting cells. Nat Commun 2:282

    Article  PubMed  CAS  Google Scholar 

  14. Cossetti C, Iraci N, Mercer TR, Leonardi T, Alpi E, Drago D, Schaeffer J (2014) Extracellular vesicles from neural stem cells transfer IFN-γ via Ifngr1 to activate Stat1 signaling in target cells. Mol Cell 56(2):193–204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Raposo G, Stoorvogel W (2013) Extracellular vesicles: exosomes, microvesicles, and friends. J Cell Biol 200(4):373–383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Waqas MY, Zhang Q, Ahmed N, Yang P, Xing G, Akhter M, Basit A, Liu T, Hong C, Arshad M, Rahman HMS, CHEN Q (2017) Cellular evidence of exosomes in the reproductive tract of chinese soft- shelled turtle pelodiscus sinensis. J Exp Zool 00:1–10

    Google Scholar 

  17. Smith J, Leonardi T, Huang B, Iraci N, Vega B, Pluchino S (2015) Extracellular vesicles and their synthetic analogues in aging and age-associated brain diseases. Biogerontology 16(2):147–185

    Article  CAS  PubMed  Google Scholar 

  18. Cocucci E, Racchetti G, Meldolesi J (2009) Shedding microvesicles: artefacts no more. Trends Cell Biol 19(2):43–51

    Article  CAS  PubMed  Google Scholar 

  19. Stahl P, Raposo G, Stahl PD (2018) Exosomes and extracellular vesicles: the path forward. Essays Biochem 62(2):119–124

    Article  PubMed  Google Scholar 

  20. Jeppesen DK, Fenix AM, Franklin JL, Higginbotham JN, Zhang Q, Zimmerman LJ, Evans R (2019) Reassessment of exosome composition. Cell 177(2):428–445. e418

  21. Kalra H, Drummen GP, Mathivanan S (2016) Focus on extracellular vesicles: introducing the next small big thing. Int J Mol Sci 17(2):170

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Stahl PD, Raposo G (2019) Extracellular vesicles: exosomes and microvesicles, integrators of homeostasis. Physiology 34(3):169–177

    Article  CAS  PubMed  Google Scholar 

  23. Bayraktar R, Van Roosbroeck K, Calin GA (2017) Cell-to-cell communication: microRNAs as hormones. Mol Oncol 11(12):1673–1686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Tkach M, Théry C (2016) Communication by extracellular vesicles: where we are and where we need to go. Cell 164(6):1226–1232

    Article  CAS  PubMed  Google Scholar 

  25. Hoshino A, Costa-Silva B, Shen T-L, Rodrigues G, Hashimoto A, Mark MT, Ceder S (2015) Tumour exosome integrins determine organotropic metastasis. Nature 527(7578):329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Maas SL, Breakefield XO, Weaver AM (2017) Extracellular vesicles: unique intercellular delivery vehicles. Trends Cell Biol 27(3):172–188

    Article  CAS  PubMed  Google Scholar 

  27. Mulcahy LA, Pink RC, Carter DRF (2014) Routes and mechanisms of extracellular vesicle uptake. J of extracellular vesicles 3(1):24641

    Article  CAS  Google Scholar 

  28. Parolini I, Federici C, Raggi C, Lugini L, Palleschi S, De Milito A, Molinari A (2009) Microenvironmental pH is a key factor for exosome traffic in tumor cells. J Biol Chem 284(49):34211–34222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Gao L, Wang L, Dai T, Jin K, Zhang Z, Wang S, Huang H (2018) Tumor-derived exosomes antagonize innate antiviral immunity. Nat Immunol 19(3):233

    Article  CAS  PubMed  Google Scholar 

  30. Lässer C, Alikhani VS, Ekström K, Eldh M, Paredes PT, Bossios A, Valadi H (2011) Human saliva, plasma and breast milk exosomes contain RNA: uptake by macrophages. J Transl Med 9(1):9

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Li CY, Li HJ, Zhang T, Gao HS, Chang JW, Men XL, WULi JJM (2013) Signifificance of apolipoprotein a1 as biomarker for early diagnosis and classifification of bladder urothelial carcinoma. Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi 31:266–270

    CAS  PubMed  Google Scholar 

  32. Li J, Liu K, Liu Y, Xu Y, Zhang F, Yang H, Wu M (2013) Exosomes mediate the cell-to-cell transmission of IFN-α-induced antiviral activity. Nat Immunol 14(8):793

    Article  CAS  PubMed  Google Scholar 

  33. Li S, Liu L, Zhuang X, Yu Y, Liu X, Cui X, Mo B (2013) MicroRNAs inhibit the translation of target mRNAs on the endoplasmic reticulum in Arabidopsis. Cell 153(3):562–574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Mathieu M, Martin-Jaular L, Lavieu G, Théry C (2019) Specificities of secretion and uptake of exosomes and other extracellular vesicles for cell-to-cell communication. Nat Cell Biol 21(1):9–17

    Article  CAS  PubMed  Google Scholar 

  35. Iraci N, Leonardi T, Gessler F, Vega B, Pluchino S (2016) Focus on extracellular vesicles: physiological role and signalling properties of extracellular membrane vesicles. Int J Mol Sci 17(2):171

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Stegmayr B, Ronquist G (1982) Promotive effect on human sperm progressive motility by prostasomes. Urol Res 10(5):253–257

    Article  CAS  PubMed  Google Scholar 

  37. Bakhti M, Winter C, Simons M (2011) Inhibition of myelin membrane sheath formation by oligodendrocyte-derived exosome-like vesicles. J Biol Chem 286(1):787–796

    Article  CAS  PubMed  Google Scholar 

  38. Van Niel G, Raposo G, Candalh C, Boussac M, Hershberg R, Cerf-Bensussan N, Heyman M (2001) Intestinal epithelial cells secrete exosome–like vesicles. Gastroenterology 121(2):337–349

    Article  PubMed  Google Scholar 

  39. Robbins PD, Morelli AE (2014) Regulation of immune responses by extracellular vesicles. Nat Rev Immunol 14(3):195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Weiss R, Gröger M, Rauscher S, Fendl B, Eichhorn T, Fischer MB, Weber V (2018) Differential interaction of platelet-derived extracellular vesicles with leukocyte subsets in human whole blood. Sci Rep 8(1):6598

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Azimi M, Ghabaee M, Moghadasi AN, Noorbakhsh F, Izad M (2018) Immunomodulatory function of treg-derived exosomes is impaired in patients with relapsing-remitting multiple sclerosis. Immunol Res 66:513–520

    Article  CAS  PubMed  Google Scholar 

  42. Gomari H, Forouzandeh Moghadam M, Soleimani M (2018) Targeted cancer therapy using engineered exosome as a natural drug delivery vehicle. Onco Targets Ther 11:5753–5762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Wahlund CJE, Gucluler G, Hiltbrunner S, Veerman RE, Naslund TI, Gabrielsson S (2017) Exosomes from antigen-pulsed dendritic cells induce stronger antigen-specifific immune responses than microvesicles in vivo. Sci Rep 7:17095

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Corrado C, Raimondo S, Chiesi A, Ciccia FD, Leo G, Alessandro R (2013) Exosomes as intercellular signaling organelles involved in health and disease: basic science and clinical applications. Int J Mol Sci 14:5338–5366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Yin W, Ouyang S, Li Y, Xiao B, Yang H (2013) Immature dendritic cell-derived exosomes: a promise subcellular vaccine for autoimmunity. Inflammation 36:232–240

    Article  CAS  PubMed  Google Scholar 

  46. Gherghiceanu M, Alexandru N, Magda SL, Constantin A, Nemecz M Filippi A, Tanko G (2019) Part one: extracellular vesicles as valuable players in diabetic cardiovascular diseases. In Extracellular vesicles: IntechOpen

  47. Segura E, Amigorena S, Théry C (2005) Mature dendritic cells secrete exosomes with strong ability to induce antigen-specific effector immune responses. Blood Cells Mol Dis 35(2):89–93

    Article  CAS  PubMed  Google Scholar 

  48. Eken C, Gasser O, Zenhaeusern G, Oehri I, Hess C, Schifferli JA (2008) Polymorphonuclear neutrophil-derived ectosomes interfere with the maturation of monocyte-derived dendritic cells. J Immunol 180(2):817–824

    Article  CAS  PubMed  Google Scholar 

  49. Giri PK, Schorey JS (2008) Exosomes derived from M. Bovis BCG infected macrophages activate antigen-specific CD4+ and CD8+ T cells in vitro and in vivo. PloS one 3(6):e2461

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Cheng L, Wang Y, Huang L (2017) Exosomes from M1-polarized macrophages potentiate the cancer vaccine by creating a pro-inflammatory microenvironment in the lymph node. Mol Ther 25(7):1665–1675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Muntasell A, Berger AC, Roche PA (2007) T cell-induced secretion of MHC class II–peptide complexes on B cell exosomes. EMBO J 26(19):4263–4272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Jan AT, Rahman S, Khan S, Abdullah TS, Choi I (2019) Biology, pathophysiological role and clinical implications of exosomes: a critical appraisal. Cells 8:99

    Article  CAS  PubMed Central  Google Scholar 

  53. Chen Y, Li G, Liu M-L (2018) Microvesicles as emerging biomarkers and therapeutic targets in cardiometabolic diseases. Genomics Proteomics Bioinformatics 16(1):50–62

    Article  PubMed  PubMed Central  Google Scholar 

  54. Kim YS, Ahn JS, Kim S, Kim HJ, Kim SH, Kang JS (2018) The potential theragnostic (diagnostic+therapeutic) application of exosomes in diverse biomedical fifields. Korean J Physiol Pharmacol 22:113–125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Nieuwland R, Berckmans RJ, McGregor S, Böing AN, Romijn FPTM, Westendorp RG, Sturk A (2000) Cellular origin and procoagulant properties of microparticles in meningococcal sepsis. Blood 95(3):930–935

    Article  CAS  PubMed  Google Scholar 

  56. Jan AT, Malik MA, Rahman S, Abdullah TS, Lee EJ, Choi I (2017) Perspective insights of exosomes in neurodegenerative diseases: a critical appraisal. Front Aging Neurosci 9:317

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Kim HK, Song KS, Park YS, Kang YH, Lee YJ, Lee KR, Ryu KW, Bae JM, Kim S (2003) Elevated levels of circulating platelet microparticles, vegf, il-6 and rantes in patients with gastric cancer: Possible role of a metastasis predictor. Eur J Cancer 39:184–191

    Article  CAS  PubMed  Google Scholar 

  58. Zhang S, Zhang X, Fu X, Li W, Xing S, Yang Y (2018) Identifification of common differentially-expressed mirnas in ovarian cancer cells and their exosomes compared with normal ovarian surface epithelial cell cells. Oncol Lett 16:2391–2401

    PubMed  PubMed Central  Google Scholar 

  59. Fu F, Jiang W, Zhou L, Chen Z (2018) Circulating exosomal mir-17-5p and mir-92a-3p predict pathologic stage and grade of colorectal cancer. Transl Oncol 11:221–232

    Article  PubMed  PubMed Central  Google Scholar 

  60. Casadei L, Calore F, Creighton CJ, Guescini M, Batte K, Iwenofu OH, Zewdu A, Braggio DA, Bill KL, Fadda P (2017) Exosome-derived mir-25-3p and mir-92a-3p stimulate liposarcoma progression. Cancer Res 77:3846–3856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Palanisamy V, Sharma S, Deshpande A, Zhou H, Gimzewski J, Wong DT (2010) Nanostructural and transcriptomic analyses of human saliva derived exosomes. PLoS ONE 5:e8577

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Michael A, Bajracharya SD, Yuen PS, Zhou H, Star RA, Illei GG, Alevizos I (2010) Exosomes from human saliva as a source of microrna biomarkers. Oral Dis 16:34–38

    Article  CAS  PubMed  Google Scholar 

  63. Jansen F, Yang X, Franklin BS, Hoelscher M, Schmitz T, Bedorf J, Werner N (2013) High glucose condition increases NADPH oxidase activity in endothelial microparticles that promote vascular inflammation. Cardiovasc Res 98(1):94–106

    Article  CAS  PubMed  Google Scholar 

  64. Kormelink TG, Mol S, de Jong EC, Wauben MH (2018) The role of extracellular vesicles when innate meets adaptive. Paper presented at the Seminars in immunopathology

  65. Li Z, Ma YY, Wang J, Zeng XF, Li R, Kang W, Hao XK (2016) Exosomal microrna-141 is upregulated in the serum of prostate cancer patients. Onco Targets Ther 9:139–148

    CAS  PubMed  Google Scholar 

  66. Xiao Y, Zheng L, Zou X, Wang J, Zhong J, Zhong T (2019) Extracellular vesicles in type 2 diabetes mellitus: key roles in pathogenesis, complications, and therapy. Journal of extracellular vesicles 8(1):1625677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Zhang Y, Shi L, Mei H, Zhang J, Zhu Y, Han X, Zhu D (2015) Inflamed macrophage microvesicles induce insulin resistance in human adipocytes. Nutr Metab 12(1):21

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The authors declare that all data were generated in-house and that no paper mill was used. The study was conceived, designed and written as original draft by M.Y.Waqs and M.A.Javid. Acquisition of data, review and final editing was performed by M.M.Nazir and S.A. Bhatti. M.F.Nisar helped in formal analysis. Z.Manzoor, S.Hameed and M.H.Khaliq contributed in Technical inputs, data curation and methodology.

Corresponding author

Correspondence to Muhammad Mudasser Nazir.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Key Points

• The study described the role of extracellular vesicles (EVs) as biomarkers in certain pathologies, cell signaling and transport.

• Highlighted the mechanism of EVs transporting snRNAs that may contribute numerous molecular events at the targeted sites in the cells.

• The snRNA trafficking act as potential non-invasive biomarkers in multiple disorders (immune system pathologies, cardiovascular issues and metabolic syndromes)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Waqas, M.Y., Javid, M.A., Nazir, M.M. et al. Extracellular vesicles and exosome: insight from physiological regulatory perspectives. J Physiol Biochem 78, 573–580 (2022). https://doi.org/10.1007/s13105-022-00877-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13105-022-00877-6

Navigation