Skip to main content
Log in

A novel therapeutic strategy for atherosclerosis: autophagy-dependent cholesterol efflux

  • Review
  • Published:
Journal of Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

Atherosclerosis (AS) is a chronic inflammatory disease characterized by abnormal lipid metabolism. Foam cell formation is also known as an early event of AS. Cholesterol efflux is a process whereby cholesterol is excreted from foam cells through transporters, which serves as one of the effective regulatory mechanisms to prevent AS. Autophagy is a biodegradable mechanism, and lipophagy is a special form of autophagy that selectively degrades lipids. Cholesterol efflux is regulated by several mechanisms. Moreover, numerous studies have shown that autophagy is also process whereby cholesterol efflux is regulated. In early studies, scholars found that cholesterol efflux is related to autophagy. Subsequent studies have shown that various targeted molecules can induce autophagy and promote the expression of cholesterol transporters (such as LXRα, ABCA1, and ABCG1) through specific signaling pathways. Several novel treatments for AS use these small molecules as entry points for research and development based on autophagy. However, this autophagy-dependent cholesterol efflux involves many different molecular mechanisms. This not only indicates that cholesterol efflux is the result of multiple factors, but also that autophagy, which mediates cholesterol efflux, is a complex physiological mechanism. Through a literature review, we found that the role of autophagy in cholesterol efflux is related to cell type and is regulated by both the level of autophagy and the mechanism that triggers autophagy. In this review, we aim to discuss the role of autophagy in cholesterol efflux from many aspects based on recent relevant studies to aid in the treatment of AS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Amengual J, Guo L, Strong A, Madrigal-Matute J, Wang H, Kaushik S et al (2018) Autophagy is required for sortilin-mediated degradation of apolipoprotein B100. Circ Res 122:568–582. https://doi.org/10.1161/CIRCRESAHA.117.311240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Avart SJ, Bernard DW, Jerome WG, Glick JM (1999) Cholesteryl ester hydrolysis in J774 macrophages occurs in the cytoplasm and lysosomes. J Lipid Res 40:405–414. https://doi.org/10.1016/S0022-2275(20)32444-5

    Article  CAS  PubMed  Google Scholar 

  3. Bi X, Vitali C, Cuchel M (2015) ABCA1 and inflammation. Arterioscler Thromb Vasc Biol 35:1551–1553. https://doi.org/10.1161/ATVBAHA.115.305547

    Article  CAS  PubMed  Google Scholar 

  4. Blom DJ, Raal FJ, Santos RD, Marais AD (2019) Lomitapide and mipomersen—inhibiting microsomal triglyceride transfer protein (MTP) and apoB100 synthesis. Curr Atheroscler Rep 21:48. https://doi.org/10.1007/s11883-019-0809-3

    Article  CAS  PubMed  Google Scholar 

  5. Brichkina A, Bulavin DV (2014) WIP-ing out atherosclerosis with autophagy. Autophagy 8:1545–1547. https://doi.org/10.4161/auto.21402

    Article  CAS  Google Scholar 

  6. Brownell N, Rohatgi A (2016) Modulating cholesterol efflux capacity to improve cardiovascular disease. Curr Opin Lipidol 27:398–407. https://doi.org/10.1097/MOL.0000000000000317

    Article  CAS  PubMed  Google Scholar 

  7. Castella B, Kopecka J, Sciancalepore P, Mandili G, Foglietta M, Mitro N et al (2017) The ATP-binding cassette transporter A1 regulates phosphoantigen release and Vγ9Vδ2 T cell activation by dendritic cells. Nat Commun 8:15663. https://doi.org/10.1038/ncomms15663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Chandra A, Rick J, Yagnik G, Aghi MK (2019) Autophagy as a mechanism for anti-angiogenic therapy resistance. Semin Cancer Biol 66:75–88. https://doi.org/10.1016/j.semcancer.2019.08.031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Diao Y (2021) Clematichinenoside AR alleviates foam cell formation and the inflammatory response in Ox-LDL-induced RAW264.7 cells by activating autophagy. Inflammation 44:758–768. https://doi.org/10.1007/s10753-020-01375-x

    Article  CAS  PubMed  Google Scholar 

  10. Dong F, Mo Z, Eid W, Courtney KC, Zha X (2014) Akt inhibition promotes ABCA1-mediated cholesterol efflux to ApoA-I through suppressing mTORC1. PLoS ONE 9:e113789. https://doi.org/10.1371/journal.pone.0113789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Feng X, Yuan Y, Wang C, Feng J, Yuan Z, Zhang X et al (2014) Autophagy involved in lipopolysaccharide-induced foam cell formation is mediated by adipose differentiation-related protein. Lipids Health Dis 13:10. https://doi.org/10.1186/1476-511X-13-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Fournier N, Travers S, Passet M, Sserve P, Girard E, Vedie B et al (2014) Autophagy is not required for abca1-mediated cholesterol efflux in cholesterol loaded human monocyte-derived macrophages. Atherosclerosis 235:e182. https://doi.org/10.1016/j.atherosclerosis.2014.05.531

    Article  Google Scholar 

  13. Frambach SJCM, de Haas R, Smeitink JAM, Rongen GA, Russel FGM, Schirris TJJ (2019) Brothers in arms: ABCA1- and ABCG1-mediated cholesterol efflux as promising targets in cardiovascular disease treatment. Pharmacol Rev 72:152–190. https://doi.org/10.1124/pr.119.017897

    Article  CAS  Google Scholar 

  14. Gao F, Li G, Liu C, Gao H, Wang H, Liu W et al (2018) Autophagy regulates testosterone synthesis by facilitating cholesterol uptake in Leydig cells. J Cell Biol 217:2103–2119. https://doi.org/10.1083/jcb.201710078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Geldenhuys WJ, Lin L, Darvesh AS, Sadana P (2017) Emerging strategies of targeting lipoprotein lipase for metabolic and cardiovascular diseases. Drug Discov Today 22:352–365. https://doi.org/10.1016/j.drudis.2016.10.007

    Article  CAS  PubMed  Google Scholar 

  16. Georgila K, Gounis M, Havaki S, Gorgoulis VG, Eliopoulos AG (2020) mTORC1-dependent protein synthesis and autophagy uncouple in the regulation of apolipoprotein A-I expression. Metabolism 105:154186. https://doi.org/10.1016/j.metabol.2020.154186

    Article  CAS  PubMed  Google Scholar 

  17. Gu H, Li H, Tang Y, Tang X, Zheng X, Liao D (2016) Nicotinate-curcumin impedes foam cell formation from THP-1 cells through restoring autophagy flux. PLoS ONE 11:e154820. https://doi.org/10.1371/journal.pone.0154820

    Article  CAS  Google Scholar 

  18. Hafiane A, Favari E, Daskalopoulou SS, Vuilleumier N, Frias MA (2020) High-density lipoprotein cholesterol efflux capacity and cardiovascular risk in autoimmune and non-autoimmune diseases. Metabolism 104:154141. https://doi.org/10.1016/j.metabol.2020.154141

    Article  CAS  PubMed  Google Scholar 

  19. Han XB, Li HX, Jiang YQ, Wang H, Li XS, Kou JY et al (2017) Upconversion nanoparticle-mediated photodynamic therapy induces autophagy and cholesterol efflux of macrophage-derived foam cells via ROS generation. Cell Death Dis 8:e2864. https://doi.org/10.1038/cddis.2017.242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. He J, Zhang G, Pang Q, Yu C, Xiong J, Zhu J et al (2017) SIRT6 reduces macrophage foam cell formation by inducing autophagy and cholesterol efflux under ox-LDL condition. FEBS J 284:1324–1337. https://doi.org/10.1111/febs.14055

    Article  CAS  PubMed  Google Scholar 

  21. Huang B, Jin M, Yan H, Cheng Y, Huang D, Ying S et al (2014) Simvastatin enhances oxidized-low density lipoprotein-induced macrophage autophagy and attenuates lipid aggregation. Mol Med Rep 11:1093–1098. https://doi.org/10.3892/mmr.2014.2790

    Article  CAS  PubMed  Google Scholar 

  22. Huang C, Yu X, Zheng X, Ou X, Tang C (2018) Interferon-stimulated gene 15 promotes cholesterol efflux by activating autophagy via the miR-17-5p/Beclin-1 pathway in THP-1 macrophage-derived foam cells. Eur J Pharmacol 827:13–21. https://doi.org/10.1016/j.ejphar.2018.02.042

    Article  CAS  PubMed  Google Scholar 

  23. Jamuna S, Ashokkumar R, Sakeena Sadullah MS, Devaraj SN (2019) Oligomeric proanthocyanidins and epigallocatechin gallate aggravate autophagy of foam cells through the activation of class III PI3K/Beclin1-complex mediated cholesterol efflux. BioFactors 45:763–773. https://doi.org/10.1002/biof.1537

    Article  CAS  PubMed  Google Scholar 

  24. Jeong S, Kim S, Park J, Jung I, Lee M, Jeon S et al (2018) Prdx1 (peroxiredoxin 1) deficiency reduces cholesterol efflux via impaired macrophage lipophagic flux. Autophagy 14:120–133. https://doi.org/10.1080/15548627.2017.1327942

    Article  CAS  PubMed  Google Scholar 

  25. Jiang Q, Hao R, Wang W, Gao H, Wang C (2016) SIRT1/Atg5/autophagy are involved in the antiatherosclerosis effects of ursolic acid. Mol Cell Biochem 420:171–184. https://doi.org/10.1007/s11010-016-2787-x

    Article  CAS  PubMed  Google Scholar 

  26. Jiang Y, Yang G, Liao Q, Zou Y, Du Y, Huang J (2019) Indole-3-carbinol inhibits lipid deposition and promotes autophagy in hyperlipidemia zebrafish larvae. Environ Toxicol Phar 70:103205. https://doi.org/10.1016/j.etap.2019.103205

    Article  CAS  Google Scholar 

  27. Kaushik S, Cuervo AM (2015) Degradation of lipid droplet-associated proteins by chaperone-mediated autophagy facilitates lipolysis. Nat Cell Biol 17:759–770. https://doi.org/10.1038/ncb3166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kim YC, Guan K (2015) mTOR: a pharmacologic target for autophagy regulation. J Clin Invest 125:25–32. https://doi.org/10.1172/JCI73939

    Article  PubMed  PubMed Central  Google Scholar 

  29. Klionsky DJ, Abdalla FC, Abeliovich H, Abraham RT, Acevedo-Arozena A, Adeli K et al (2012) Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy 8:445–544. https://doi.org/10.4161/auto.19496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kobiyama K, Ley K (2018) Atherosclerosis a chronic inflammatory disease with an autoimmune component. Circ Res 123:1118–1120. https://doi.org/10.1161/CIRCRESAHA.118.313816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kou JY, Li Y, Zhong ZY, Jiang YQ, Li XS, Han XB et al (2018) Berberine-sonodynamic therapy induces autophagy and lipid unloading in macrophage. Cell Death Dis 8:e2558. https://doi.org/10.1038/cddis.2016.354

    Article  CAS  Google Scholar 

  32. Kounakis K, Chaniotakis M, Markaki M, Tavernarakis N (2019) Emerging roles of lipophagy in health and disease. Front Cell Dev Biol 7:185. https://doi.org/10.3389/fcell.2019.00185

    Article  PubMed  PubMed Central  Google Scholar 

  33. Lavandero S, Chiong M, Rothermel BA, Hill JA (2015) Autophagy in cardiovascular biology. J Clin Invest 125:55–64. https://doi.org/10.1172/JCI73943

    Article  PubMed  PubMed Central  Google Scholar 

  34. Le Guezennec X, Brichkina A, Huang Y, Kostromina E, Han W, Bulavin DV (2012) Wip1-dependent regulation of autophagy, obesity, and atherosclerosis. Cell Metab 16:68–80. https://doi.org/10.1016/j.cmet.2012.06.003

    Article  CAS  PubMed  Google Scholar 

  35. Leng S, Iwanowycz S, Saaoud F, Wang J, Wang Y, Sergin I et al (2016) Ursolic acid enhances macrophage autophagy and attenuates atherogenesis. J Lipid Res 57:1006–1016. https://doi.org/10.1194/jlr.M065888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Li B, Liao S, Yin Y, Long C, Guo L, Cao X et al (2015) Telmisartan-induced PPARγ activity attenuates lipid accumulation in VSMCs via induction of autophagy. Mol Biol Rep 42:179–186. https://doi.org/10.1007/s11033-014-3757-6

    Article  CAS  PubMed  Google Scholar 

  37. Li X, Zhang X, Zheng L, Kou J, Zhong Z, Jiang Y et al (2016) Hypericin-mediated sonodynamic therapy induces autophagy and decreases lipids in THP-1 macrophage by promoting ROS-dependent nuclear translocation of TFEB. Cell Death Dis 7:e2527. https://doi.org/10.1038/cddis.2016.433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Li X, Zhou Y, Zhang X, Cao X, Wu C, Guo P (2017) Cordycepin stimulates autophagy in macrophages and prevents atherosclerotic plaque formation in ApoE-/- mice. Oncotarget 8:94726–37. https://doi.org/10.18632/oncotarget.21886

    Article  PubMed  PubMed Central  Google Scholar 

  39. Li C, Ye L, Yang L, Yu X, He Y, Chen Z et al (2018) Rapamycin promotes the survival and adipogenesis of ischemia-challenged adipose derived stem cells by improving autophagy. Cell Physiol Biochem 44:1762–1774. https://doi.org/10.1159/000485783

    Article  CAS  Google Scholar 

  40. Li Y, Sun T, Shen S, Wang L, Yan J (2019) LncRNA DYNLRB2-2 inhibits THP-1 macrophage foam cell formation by enhancing autophagy. Biol Chem 400:1047–1057. https://doi.org/10.1515/hsz-2018-0461

    Article  CAS  Google Scholar 

  41. Liang X, Guan X (2017) p62/SQSTM1: A potential molecular target for treatment of atherosclerosis. Front Lab Med 1:104–106. https://doi.org/10.1016/j.flm.2017.06.007

    Article  Google Scholar 

  42. Liang X, Wang C, Sun Y, Song W, Lin J, Li J et al (2019) p62/mTOR/LXRα pathway inhibits cholesterol efflux mediated by ABCA1 and ABCG1 during autophagy blockage. Biochem Bioph Res Co 514:1093–1100. https://doi.org/10.1016/j.bbrc.2019.04.134

    Article  CAS  Google Scholar 

  43. Liang X, Liu L, Wang Y, Guo H, Fan H, Zhang C et al (2020) Autophagy-driven NETosis is a double-edged sword – review. Biomed Pharmacother 126:110065. https://doi.org/10.1016/j.biopha.2020.110065

    Article  CAS  PubMed  Google Scholar 

  44. Liu Y, Gao J, Peng M, Meng H, Ma H, Cai P et al (2018) A review on central nervous system effects of gastrodin. Front Pharmacol 9:24. https://doi.org/10.3389/fphar.2018.00024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Lozano R, Naghavi M, Foreman K, Lim S, Shibuya K, Aboyans V et al (2012) Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010. The Lancet 380:2095–2128. https://doi.org/10.1016/S0140-6736(12)61728-0

    Article  Google Scholar 

  46. Lu R, Tsuboi T, Okumura-Noji K, Iwamoto N, Yokoyama S (2016) Caveolin-1 facilitates internalization and degradation of ABCA1 and probucol oxidative products interfere with this reaction to increase HDL biogenesis. Atherosclerosis 253:54–60. https://doi.org/10.1016/j.atherosclerosis.2016.08.025

    Article  CAS  PubMed  Google Scholar 

  47. Lu S, Luo Y, Sun G, Sun X (2020) Ginsenoside compound K attenuates Ox-LDL-mediated macrophage inflammation and foam cell formation via autophagy induction and modulating NF-κB, p38, and JNK MAPK signaling. Front Pharmacol 11:567238. https://doi.org/10.3389/fphar.2020.567238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Luo F, Das A, Chen J, Wu P, Li X, Fang Z (2019) Metformin in patients with and without diabetes: a paradigm shift in cardiovascular disease management. Cardiovasc Diabetol 18:54. https://doi.org/10.1186/s12933-019-0860-y

    Article  PubMed  PubMed Central  Google Scholar 

  49. Ma Y, Huang Z, Zhou Z, He X, Wang Y, Meng C et al (2018) A novel antioxidant Mito-Tempol inhibits ox-LDL-induced foam cell formation through restoration of autophagy flux. Free Radical Bio Med 129:463–472. https://doi.org/10.1016/j.freeradbiomed.2018.10.412

    Article  CAS  Google Scholar 

  50. Ma C, Zhang W, Yang X, Liu Y, Liu L, Feng K et al (2018) Functional interplay between liver X receptor and AMP-activated protein kinase α inhibits atherosclerosis in apolipoprotein E-deficient mice − a new anti-atherogenic strategy. Brit J Pharmacol 175:1486–1503. https://doi.org/10.1111/bph.14156

    Article  CAS  Google Scholar 

  51. Madeo F, Eisenberg T, Büttner S, Ruckenstuhl C, Kroemer G (2014) Spermidine: a novel autophagy inducer and longevity elixir. Autophagy 6:160–162. https://doi.org/10.4161/auto.6.1.10600

    Article  Google Scholar 

  52. Martinez-Lopez N, Garcia-Macia M, Sahu S, Athonvarangkul D, Liebling E, Merlo P et al (2016) Autophagy in the CNS and periphery coordinate lipophagy and lipolysis in the brown adipose tissue and liver. Cell Metab 23:113–127. https://doi.org/10.1016/j.cmet.2015.10.008

    Article  CAS  PubMed  Google Scholar 

  53. Michiels CF, Kurdi A, Timmermans J, De Meyer GRY, Martinet W (2016) Spermidine reduces lipid accumulation and necrotic core formation in atherosclerotic plaques via induction of autophagy. Atherosclerosis 251:319–327. https://doi.org/10.1016/j.atherosclerosis.2016.07.899

    Article  CAS  PubMed  Google Scholar 

  54. Nnah IC, Wang B, Saqcena C, Weber GF, Bonder EM, Bagley D et al (2019) TFEB-driven endocytosis coordinates MTORC1 signaling and autophagy. Autophagy 15:151–164. https://doi.org/10.1080/15548627.2018.1511504

    Article  CAS  PubMed  Google Scholar 

  55. Ouimet M, Marcel YL (2012) Regulation of lipid droplet cholesterol efflux from macrophage foam cells. Arterioscler Thromb Vasc Biol 32:575–581. https://doi.org/10.1161/ATVBAHA.111.240705

    Article  CAS  PubMed  Google Scholar 

  56. Ouimet M, Franklin V, Mak E, Liao X, Tabas I, Marcel YL (2011) Autophagy regulates cholesterol efflux from macrophage foam cells via lysosomal acid lipase. Cell Metab 13:655–667. https://doi.org/10.1016/j.cmet.2011.03.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Ouimet M, Ediriweera H, Afonso MS, Ramkhelawon B, Singaravelu R, Liao X et al (2017) microRNA-33 regulates macrophage autophagy in atherosclerosis. Arterioscler Thromb Vasc Biol 37:1058–1067. https://doi.org/10.1161/ATVBAHA.116.308916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Ouimet M, Barrett TJ, Fisher EA (2019) HDL and reverse cholesterol transport. Circ Res 124:1505–1518. https://doi.org/10.1161/CIRCRESAHA.119.312617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Phillips MC (2014) Molecular mechanisms of cellular cholesterol efflux. J Biol Chem 289:24020–24029. https://doi.org/10.1074/jbc.R114.583658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Pi S, Mao L, Chen J, Shi H, Liu Y, Guo X et al (2021) The P2RY12 receptor promotes VSMC-derived foam cell formation by inhibiting autophagy in advanced atherosclerosis. Autophagy 17:980–1000. https://doi.org/10.1080/15548627.2020.1741202

    Article  CAS  PubMed  Google Scholar 

  61. Pietrocola F, Lachkar S, Enot DP, Niso-Santano M, Bravo-San Pedro JM, Sica V et al (2015) Spermidine induces autophagy by inhibiting the acetyltransferase EP300. Cell Death Differ 22:509–516. https://doi.org/10.1038/cdd.2014.215

    Article  CAS  PubMed  Google Scholar 

  62. Qiao L, Wang H, Xiang L, Ma J, Zhu Q, Xu D et al (2020) Deficient chaperone-mediated autophagy promotes lipid accumulation in macrophage. J Cardiovasc Transl. https://doi.org/10.1007/s12265-020-09986-3

    Article  Google Scholar 

  63. Rao X, Wang Y (2019) Apolipoprotein A-I improves hepatic autophagy through the AMPK pathway. Biochimie 165:210–218. https://doi.org/10.1016/j.biochi.2019.08.001

    Article  CAS  PubMed  Google Scholar 

  64. Ren H, Wang D, Zhang L, Kang X, Li Y, Zhou X et al (2019) Catalpol induces autophagy and attenuates liver steatosis in ob/ob and high-fat diet-induced obese mice. Aging 11:9461–9477. https://doi.org/10.18632/aging.102396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Robichaud S, Fairman G, Vijithakumar V, Mak E, Cook DP, Pelletier AR et al (2021) Identification of novel lipid droplet factors that regulate lipophagy and cholesterol efflux in macrophage foam cells. Autophagy 17:3671–3689. https://doi.org/10.1080/15548627.2021.1886839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Robinet P, Ritchey B, Smith JD (2013) Physiological difference in autophagic flux in macrophages from 2 mouse strains regulates cholesterol ester metabolism. Arterioscler Thromb Vasc Biol 33:903–910. https://doi.org/10.1161/ATVBAHA.112.301041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Rohatgi A (2019) Reverse cholesterol transport and atherosclerosis. Arterioscler Thromb Vasc Biol 39:2–04. https://doi.org/10.1161/ATVBAHA.118.311978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Ronsein GE, Vaisar T (2017) Inflammation, remodeling, and other factors affecting HDL cholesterol efflux. Curr Opin Lipidol 1:52–59. https://doi.org/10.1097/MOL.0000000000000382

    Article  CAS  Google Scholar 

  69. Röszer T (2017) Transcriptional control of apoptotic cell clearance by macrophage nuclear receptors. Apoptosis 22:284–294. https://doi.org/10.1007/s10495-016-1310-x

    Article  CAS  PubMed  Google Scholar 

  70. Saliba Gustafsson P, Pedrelli M, Gertow K, Werngren O, Janas V, Pourteymour S et al (2019) Subclinical atherosclerosis and its progression are modulated by PLIN2 through a feed-forward loop between LXR and autophagy. J Intern Med 286:660–675. https://doi.org/10.1111/joim.12951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Shao B, Han B, Zeng Y, Su D, Liu C (2016) The roles of macrophage autophagy in atherosclerosis. Acta Pharmacol Sin 37:150–156. https://doi.org/10.1038/aps.2015.87

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Sharma L, Lone NA, Knott RM, Hassan A, Abdullah T (2018) Trigonelline prevents high cholesterol and high fat diet induced hepatic lipid accumulation and lipo-toxicity in C57BL/6J mice, via restoration of hepatic autophagy. Food Chem Toxicol 121:283–296. https://doi.org/10.1016/j.fct.2018.09.011

    Article  CAS  PubMed  Google Scholar 

  73. Shen W, Azhar S, Kraemer FB (2018) SR-B1: a unique multifunctional receptor for cholesterol influx and efflux. Annu Rev Physiol 80:95–116. https://doi.org/10.1146/annurev-physiol-021317-121550

    Article  CAS  PubMed  Google Scholar 

  74. Shi X, Li W, Liu H, Yin D, Zhao J (2017) β-Cyclodextrin induces the differentiation of resident cardiac stem cells to cardiomyocytes through autophagy. Biochim Biophys Acta Molec Cell Res 1864:1425–34. https://doi.org/10.1016/j.bbamcr.2017.05.012

    Article  CAS  Google Scholar 

  75. Shi Y, Jia M, Xu L, Fang Z, Wu W, Zhang Q et al (2019) miR-96 and autophagy are involved in the beneficial effect of grape seed proanthocyanidins against high-fat-diet-induced dyslipidemia in mice. Phytother Res 33:1222–1232. https://doi.org/10.1002/ptr.6318

    Article  CAS  PubMed  Google Scholar 

  76. Shi Y, Jiang S, Zhao T, Gong Y, Liao D, Qin L (2020) Celastrol suppresses lipid accumulation through LXRα/ABCA1 signaling pathway and autophagy in vascular smooth muscle cells. Biochem Bioph Res Co 532:466–474. https://doi.org/10.1016/j.bbrc.2020.08.076

    Article  CAS  Google Scholar 

  77. Singh R, Kaushik S, Wang Y, Xiang Y, Novak I, Komatsu M et al (2009) Autophagy regulates lipid metabolism. Nature 458:1131–1135. https://doi.org/10.1038/nature07976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Singh R, Xiang Y, Wang Y, Baikati K, Cuervo AM, Luu YK et al (2009) Autophagy regulates adipose mass and differentiation in mice. J Clin Invest 119:3329–3339. https://doi.org/10.1172/JCI39228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Song P, Fang Z, Wang H, Cai Y, Rahimi K, Zhu Y et al (2020) Global and regional prevalence, burden, and risk factors for carotid atherosclerosis: a systematic review, meta-analysis, and modelling study. Lancet Glob Health 8:e721–e729. https://doi.org/10.1016/S2214-109X(20)30117-0

    Article  PubMed  Google Scholar 

  80. Sukhorukov VN, Khotina VA, Chegodaev YS, Ivanova E, Sobenin IA, Orekhov AN (2020) Lipid metabolism in macrophages: focus on atherosclerosis. Biomedicines 8:262. https://doi.org/10.3390/biomedicines8080262

    Article  CAS  PubMed Central  Google Scholar 

  81. Tabas I, García-Cardeña G, Owens GK (2015) Recent insights into the cellular biology of atherosclerosis. J Cell Biol 209:13–22. https://doi.org/10.1083/jcb.201412052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Talbot CPJ, Plat J, Ritsch A, Mensink RP (2018) Determinants of cholesterol efflux capacity in humans. Prog Lipid Res 69:21–32. https://doi.org/10.1016/j.plipres.2017.12.001

    Article  CAS  PubMed  Google Scholar 

  83. Tang Y, Wu H, Shao B, Wang Y, Liu C, Guo M (2018) Celosins inhibit atherosclerosis in ApoE-/- mice and promote autophagy flow. J Ethnopharmacol 215:74–82. https://doi.org/10.1016/j.jep.2017.12.031

    Article  CAS  PubMed  Google Scholar 

  84. Tao J, Yang P, Xie L, Pu Y, Guo J, Jiao J et al (2021) Gastrodin induces lysosomal biogenesis and autophagy to prevent the formation of foam cells via AMPK-FoxO1-TFEB signalling axis. J Cell Mol Med 25:5769–5781. https://doi.org/10.1111/jcmm.16600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Texada MJ, Malita A, Christensen CF, Dall KB, Faergeman NJ, Nagy S et al (2019) Autophagy-mediated cholesterol trafficking controls steroid production. Dev Cell 48:659–671. https://doi.org/10.1016/j.devcel.2019.01.007

    Article  CAS  PubMed  Google Scholar 

  86. Vazquez MM, Gutierrez MV, Salvatore SR, Puiatti M, Dato VA, Chiabrando GA et al (2020) Nitro-oleic acid, a ligand of CD36, reduces cholesterol accumulation by modulating oxidized-LDL uptake and cholesterol efflux in RAW264.7 macrophages. Redox Biol 36:101591. https://doi.org/10.1016/j.redox.2020.101591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Wang Y, Viscarra J, Kim S, Sul HS (2015) Transcriptional regulation of hepatic lipogenesis. Nat Rev Mol Cell Bio 16:678–689. https://doi.org/10.1038/nrm4074

    Article  CAS  Google Scholar 

  88. Wang L, Jiang Y, Song X, Guo C, Zhu F, Wang X et al (2016) Pdcd4 deficiency enhances macrophage lipoautophagy and attenuates foam cell formation and atherosclerosis in mice. Cell Death Dis 7:e2055. https://doi.org/10.1038/cddis.2015.416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Wang L, Palme V, Rotter S, Schilcher N, Cukaj M, Wang D et al (2017) Piperine inhibits ABCA1 degradation and promotes cholesterol efflux from THP-1-derived macrophages. Mol Nutr Food Res 61:1500960. https://doi.org/10.1002/mnfr.201500960

    Article  CAS  Google Scholar 

  90. Wang HH, Garruti G, Liu M, Portincasa P, Wang DQH (2017) Cholesterol and lipoprotein metabolism and atherosclerosis: recent advances in reverse cholesterol transport. Ann Hepatol 16:S27-42. https://doi.org/10.5604/01.3001.0010.5495

    Article  CAS  PubMed  Google Scholar 

  91. Wang Y, Ding W, Li T (2018) Cholesterol and bile acid-mediated regulation of autophagy in fatty liver diseases and atherosclerosis. Biochim Biophys Acta Molec Cell Biol Lipids 1863:726–33. https://doi.org/10.1016/j.bbalip.2018.04.005

    Article  CAS  Google Scholar 

  92. Wang D, Yang Y, Lei Y, Tzvetkov NT, Liu X, Yeung A et al (2019) Targeting foam cell formation in atherosclerosis: therapeutic potential of natural products. Pharmacol Rev 71:596–670. https://doi.org/10.1124/pr.118.017178

    Article  CAS  PubMed  Google Scholar 

  93. Wang C, Yang W, Liang X, Song W, Lin J, Sun Y et al (2020) MicroRNA-761 modulates foam cell formation and inflammation through autophagy in the progression of atherosclerosis. Mol Cell Biochem 474:135–146. https://doi.org/10.1007/s11010-020-03839-y

    Article  CAS  PubMed  Google Scholar 

  94. Ward C, Martinez-Lopez N, Otten EG, Carroll B, Maetzel D, Singh R et al (2016) Autophagy, lipophagy and lysosomal lipid storage disorders. Biochim Biophys Acta 1861:269–284. https://doi.org/10.1016/j.bbalip.2016.01.006

    Article  CAS  PubMed  Google Scholar 

  95. Wolf D, Ley K (2019) Immunity and inflammation in atherosclerosis. Circ Res 124:315–327. https://doi.org/10.1161/CIRCRESAHA.118.313591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Wu W, Shan Z, Wang R, Chang G, Wang M, Wu R et al (2019) Overexpression of miR-223 inhibits foam cell formation by inducing autophagy in vascular smooth muscle cells. Am J Transl Res 11:4326–4336

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Wu H, Feng K, Zhang C, Zhang H, Zhang J, Hua Y et al (2021) Metformin attenuates atherosclerosis and plaque vulnerability by upregulating KLF2-mediated autophagy in apoE-/- mice. Biochem Bioph Res Co 557:334–341. https://doi.org/10.1016/j.bbrc.2021.04.029

    Article  CAS  Google Scholar 

  98. Xiaolong L, Dongmin G, Liu M, Zuo W, Huijun H, Qiufen T et al (2020) FGF21 induces autophagy-mediated cholesterol efflux to inhibit atherogenesis via RACK1 up-regulation. J Cell Mol Med 24:4992–5006. https://doi.org/10.1111/jcmm.15118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Xie Y, Li J, Kang R, Tang D (2020) Interplay between lipid metabolism and autophagy. Front Cell Dev Biol 8:431. https://doi.org/10.3389/fcell.2020.00431

    Article  PubMed  PubMed Central  Google Scholar 

  100. Yang M, Silverstein RL (2019) CD36 signaling in vascular redox stress. Free Radical Bio Med 136:159–171. https://doi.org/10.1016/j.freeradbiomed.2019.02.021

    Article  CAS  Google Scholar 

  101. Yang Y, Wang J, Guo S, Pourteymour S, Xu Q, Gong J et al (2020) Non-lethal sonodynamic therapy facilitates the M1-to-M2 transition in advanced atherosclerotic plaques via activating the ROS–AMPK–mTORC1–autophagy pathway. Redox Biol 32:101501. https://doi.org/10.1016/j.redox.2020.101501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Yao F, Lv Y, Zhang M, Xie W, Tan Y, Gong D et al (2015) Apelin-13 impedes foam cell formation by activating class III PI3K/Beclin-1-mediated autophagic pathway. Biochem Bioph Res Co 466:637–643. https://doi.org/10.1016/j.bbrc.2015.09.045

    Article  CAS  Google Scholar 

  103. Younce C, Kolattukudy P (2012) MCP-1 induced protein promotes adipogenesis via oxidative stress, endoplasmic reticulum stress and autophagy. Cell Physiol Biochem 30:307–320. https://doi.org/10.1159/000339066

    Article  CAS  PubMed  Google Scholar 

  104. Yu X, Zhang D, Zheng X, Tang C (2019) Cholesterol transport system: an integrated cholesterol transport model involved in atherosclerosis. Prog Lipid Res 73:65–91. https://doi.org/10.1016/j.plipres.2018.12.002

    Article  CAS  PubMed  Google Scholar 

  105. Zahid MK, Rogowski M, Ponce C, Choudhury M, Moustaid-Moussa N, Rahman SM (2020) CCAAT/enhancer-binding protein beta (C/EBPβ) knockdown reduces inflammation, ER stress, and apoptosis, and promotes autophagy in oxLDL-treated RAW264.7 macrophage cells. Mol Cell Biochem 463:211–223. https://doi.org/10.1007/s11010-019-03642-4

    Article  CAS  PubMed  Google Scholar 

  106. Zhang L, Liu Q, Zhang H, Wang X, Chen S, Yang Y et al (2018) C1q/TNF-related protein 9 inhibits THP-1 macrophage foam cell formation by enhancing autophagy. J Cardiovasc Pharm 72:167–175. https://doi.org/10.1097/FJC.0000000000000612

    Article  CAS  Google Scholar 

  107. Zhang C, Zhu N, Long J, Wu H, Wang Y, Liu B et al (2020) Celastrol induces lipophagy via the LXRα/ABCA1 pathway in clear cell renal cell carcinoma. Acta Pharmacol Sin 42:1472–1485. https://doi.org/10.1038/s41401-020-00572-6

    Article  CAS  PubMed  Google Scholar 

  108. Zhang J, Ma CR, Hua YQ et al (2021) Contradictory regulation of macrophages on atherosclerosis based on polarization, death and autophagy. Life Sci 276:118957. https://doi.org/10.1016/j.lfs.2020.118957

    Article  CAS  PubMed  Google Scholar 

  109. Zhang X, Qin Y, Wan X, Liu H, Lv C, Ruan W et al (2021) Rosuvastatin exerts anti-atherosclerotic effects by improving macrophage-related foam cell formation and polarization conversion via mediating autophagic activities. J Transl Med 19:62. https://doi.org/10.1186/s12967-021-02727-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Zhang H, Ge S, Ni B, He K, Zhu P, Wu X et al (2021) Augmenting ATG14 alleviates atherosclerosis and inhibits inflammation via promotion of autophagosome-lysosome fusion in macrophages. Autophagy 17:4218–4230. https://doi.org/10.1080/15548627.2021.1909833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Zheng S, Du Y, Ye Q, Zha K, Feng J (2021) Atorvastatin enhances foam cell lipophagy and promotes cholesterol efflux through the AMP-activated protein kinase/mammalian target of rapamycin pathway. J Cardiovasc Pharm 77:508–518. https://doi.org/10.1097/FJC.0000000000000942

    Article  CAS  Google Scholar 

  112. Zhou M, Ren P, Zhang Y, Li S, Li M, Li P et al (2019) Shen-Yuan-Dan capsule attenuates atherosclerosis and foam cell formation by enhancing autophagy and inhibiting the PI3K/Akt/mTORC1 signaling pathway. Front Pharmacol 10:603. https://doi.org/10.3389/fphar.2019.00603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Editage for technical editing of the manuscript.

Funding

This research was supported by the Nature Science Foundation of Heilongjiang Province (No. LH2020H137).

Author information

Authors and Affiliations

Authors

Contributions

Haipeng Guo: conceptualization; Dongmei Wei: writing—original draft; Rui Liu: writing—review and editing; Chao Zhang: drawing and tabulating; Song Jiang: searching literature; Weijia Wang: analyzing literature; Hongzhe Hu: software; Lijuan Shen: project administration; Xiaofei Liang: supervision, funding acquisition. The authors declare that all data were generated in-house and that no paper mill was used.

Corresponding author

Correspondence to Xiaofei Liang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Key Points

• Autophagy can regulate cholesterol efflux in foam cells by many molecular mechanisms.

• Autophagy-dependent cholesterol efflux may be related to autophagy level or autophagy mechanism.

• Autophagy-dependent cholesterol efflux is a potential therapeutic strategy for atherosclerosis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, H., Wei, D., Liu, R. et al. A novel therapeutic strategy for atherosclerosis: autophagy-dependent cholesterol efflux. J Physiol Biochem 78, 557–572 (2022). https://doi.org/10.1007/s13105-021-00870-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13105-021-00870-5

Keywords

Navigation