Skip to main content

From Historical and Theoretical Analysis of Representation and Geometry to Topology for Structural Optimization

  • Conference paper
  • First Online:
Architectural Graphics (EGA 2022)

Abstract

To study Geometry and Representation from a theoretical point of view, it is certainly necessary to refer critically to the historical-anthropological climate of their genesis. This training approach allows to see and understand their evolution/impact for new approaches to the genesis of architectural/engineering artefacts, both from a configurative and structural point of view. On the other hand, if we consider the typical primitive/intuitive approaches of Representation, up to its rigorous elaborations based on a consistent knowledge of Optics and Geometry, it is possible to recognize the strong links between artistic experience, mathematical contribution and scientific elaboration. It is therefore possible to offer a broad overview of the “state of the art” relating to critical sector studies, conducted both in Italy and abroad, to underline:

  • how awareness in the multiple fields of Geometry is expressed in the methods and process of realization of architecture and engineering, from conception to its realization;

  • how Representation stands as a means between theory and construction.

In this sense we focus on Topology and its genesis, as an area of Geometry that can be concretized in Structural Optimization, in order to verify the promising results that these procedures ensure in terms of reducing the use of material and design iterations, without neglecting the architectural/engineering quality, also in configurative terms. For this reason, one of the main factors in the growing popularity of this topic is the development, in computational terms, of modern computers, which allow to reliably solve complex analyzes based on FEM (Finite Element Analysis).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. De Rosa, A., Sgrosso, A., Giordano, A.: La geometria nell’immagine. UTET, Torino (2002)

    Google Scholar 

  2. Emmons, P.: Drawing Imagining Building. Routledge, London (2019)

    Google Scholar 

  3. Kemp, M.: The Science of Art: Optical Themes in Western Art from Brunelleschi to Seurat. Yale University Press (1990)

    Google Scholar 

  4. Gulli, R.: Structure and Construction. University Press, Firenze (2012)

    Google Scholar 

  5. Beghini, L.L., Beghini, A., Katz, N., Baker, W.F., Paulino, G.H.: Connecting architecture and engineering through structural topology optimization. Eng. Struct. 59, 716–726 (2014). https://doi.org/10.1016/j.engstruct.2013.10.032

    Article  Google Scholar 

  6. Ohsaki, M.: Optimization of Finite Dimensional Structures. CRC Press, Boca Raton (2011)

    MATH  Google Scholar 

  7. Kara, H.: On Design Engineering. Archit. Des. 80, 46–51 (2010). https://doi.org/10.1002/ad.1105

    Article  Google Scholar 

  8. Gulikers, I., Blom, K.: “A historical angle”, a survey of recent literature on the use and value of history in geometrical education. Educ. Stud. Math. 47, 223–258 (2001). https://www.jstor.org/stable/3483329

  9. Taton, R.: History of Science. Basic Books (1963)

    Google Scholar 

  10. Glas, E.: On the dynamics of mathematical change in the case of Monge and the French revolution. Stud. Hist. Philos. Sci. Part A. 17, 249–268 (1986). https://doi.org/10.1016/0039-3681(86)90009-9

    Article  MathSciNet  MATH  Google Scholar 

  11. Poncelet, J.V.: Traité des propriétés projectives des figures: useful ouvrage in ceux qui s’occupent des applications de la géométrie descriptive et d’operations géométriques sur le terrain. Bachelier, Paris (1822)

    Google Scholar 

  12. Eder, G.: Projective duality and the rise of modern logic. Bull. Symb. Log. 27, 351–384 (2021). https://doi.org/10.1017/bsl.2021.40

  13. Lorenat, J.: Figures real, imagined, and missing in Poncelet, Plücker, and Gergonne. Hist. Math. 42, 155–192 (2015). https://doi.org/10.1016/j.hm.2014.06.005

    Article  MathSciNet  MATH  Google Scholar 

  14. Firby, P.A., Gardiner, C.F. (eds.): Intuitive ideas. In: Surface Topology, pp. 15–31. Woodhead Publishing (2001)

    Google Scholar 

  15. Poincaré, H.: Analysis situs. J. l’École Polytech. 2, 1–123 (1895)

    Google Scholar 

  16. James, I.M.: History of Topology. Elsevier, Amsterdam (1999)

    Google Scholar 

  17. Dieudonné, J.: A history of algebraic and differential topology 1900–1960. Birkhäuser Basel, Boston (2009)

    Google Scholar 

  18. Carter, S.J.: How Surfaces Intersect in Space: An Introduction to Topology. World Scientific (1995)

    Google Scholar 

  19. Reid, M., Szendroi, B.: Geometry and Topology. Cambridge University Press (2005)

    Google Scholar 

  20. Singh, M., Song, Y., Wu, J.: Algebraic Topology and Related Topics. Birkhäuser, Singapore (2019)

    Google Scholar 

  21. Kolarevic, B.: Architecture in the Digital Age, Design and Manufacturing. Taylor & Francis, London (2003)

    Google Scholar 

  22. Weiler, K.J.: Topological structures for geometric modeling (1986)

    Google Scholar 

  23. Zomorodian, A.J.: Topology for Computing. Cambridge University Press, Cambridge (2005)

    Google Scholar 

  24. Rozvany, G.I.N. (ed.): Topology Optimization in Structural Mechanics. Springer, Vienna (1997). https://doi.org/10.1007/978-3-7091-2566-3

  25. Papalambros, P.Y., et al.: Principles of Optimal Design: Modeling and Computation. Cambridge University Press, Cambridge (2000)

    Book  Google Scholar 

  26. Bendsøe, M.P., Sigmund, O.: Topology Optimization. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-662-05086-6

    Book  MATH  Google Scholar 

  27. Januszkiewicz, K., Banachowicz, M.: Nonlinear shaping architecture designed with using evolutionary structural optimization tools. IOP Conf. Ser. Mater. Sci. Eng. 245, 082042 (2017). https://doi.org/10.1088/1757-899X/245/8/082042

  28. Galjaard, S., Hofman, S., Ren, S.: New opportunities to optimize structural designs in metal by using additive manufacturing. In: Block, P., Knippers, J., Mitra, N.J., Wang, W. (eds.) Advances in Architectural Geometry 2014, pp. 79–93. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-11418-7_6

    Chapter  Google Scholar 

  29. Rozvany, G.I.N. (ed.): Shape and Layout Optimization of Structural Systems and Optimality Criteria Methods. ICMS, vol. 325. Springer, Vienna (1992). https://doi.org/10.1007/978-3-7091-2788-9

    Book  MATH  Google Scholar 

  30. Rozvany, G.I.N., Olhoff, N. (eds.): Topology Optimization of Structures and Composite Continua. Springer, Dordrecht (2000). https://doi.org/10.1007/978-94-010-0910-2

    Book  MATH  Google Scholar 

  31. Michell, A.G.M.: LVIII. The limits of economy of material in frame-structures. Lond. Edinb. Dublin Philos. Mag. J. Sci. 8(47), 589–597 (1904). https://doi.org/10.1080/14786440409463229

    Article  MATH  Google Scholar 

  32. Hemp, W.S.: Optimum Structures. Clarendon Press, Oxford (1973)

    Google Scholar 

  33. Querin, O., Nicolás, M.V., Alonso, C., Ansola, R., Martí-Montrull, P.: Topology Design Methods for Structural Optimization. Academic Press, Oxford (2017)

    MATH  Google Scholar 

  34. Bendsøe, M.P.: Optimal shape design as a material distribution problem. Struct. Optim. 1(4), 193–202 (1989). https://doi.org/10.1007/BF01650949

    Article  Google Scholar 

  35. Haslinger, J., Mäkinen, R.A.E.: Introduction to Shape Optimization. Society for Industrial and Applied Mathematics (2003)

    Google Scholar 

  36. Sokolowski, J., Zolesio, J.-P.: Introduction to Shape Optimization. Springer, Heidelberg (1992). https://doi.org/10.1007/978-3-642-58106-9

    Book  MATH  Google Scholar 

  37. Rozvany, G.I.N., Bendsøe, M.P., Kirsch, U.: Layout optimization of structures. Appl. Mech. Rev. 48, 41–119 (1995). https://doi.org/10.1115/1.3005097

    Article  Google Scholar 

  38. Hassani, B., Hinton, E.: Homogenization and Structural Topology Optimization. Springer, London (1999). https://doi.org/10.1007/978-1-4471-0891-7

    Book  MATH  Google Scholar 

  39. Rozvany, G.I.N.: Aims, scope, methods, history and unified terminology of computer-aided topology optimization in structural mechanics. Struct. Multidiscip. Optim. 21(2), 90–108 (2001). https://doi.org/10.1007/s001580050174

    Article  MathSciNet  Google Scholar 

  40. Bendsøe, M.P.: Optimal shape design as a material distribution problem. Struct. Optim. 1, 193–202 (1989). https://doi.org/10.1007/BF01650949

    Article  Google Scholar 

  41. Bendsøe, M.P., Kikuchi, N.: Generating optimal topologies in structural design using a homogenization method. Comput. Meth. Appl. Mech. Eng. 71(2), 197–224 (1988). https://doi.org/10.1016/0045-7825(88)90086-2

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Giordano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Giordano, A., Panarotto, F., Bernardello, R.A., Borin, P. (2022). From Historical and Theoretical Analysis of Representation and Geometry to Topology for Structural Optimization. In: Ródenas-López, M.A., Calvo-López, J., Salcedo-Galera, M. (eds) Architectural Graphics. EGA 2022. Springer Series in Design and Innovation , vol 22. Springer, Cham. https://doi.org/10.1007/978-3-031-04703-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-04703-9_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-04702-2

  • Online ISBN: 978-3-031-04703-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics