Skip to main content

Advertisement

Log in

Insights into the therapeutic potential of histone deacetylase inhibitor/immunotherapy combination regimens in solid tumors

  • Review Article
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Abstract

Solid tumors including skin, lung, breast, colon, and prostate cancers comprise the most diagnosed cancers worldwide. Treatment of such cancers is still challenging specially in the advanced/metastatic setting. The growing understanding of the tumor microenvironment has revolutionized the cancer therapy paradigms. Targeting programmed death-1 (PD-1)/PD-L1 immune checkpoint has been extensively studied over this decade as a new trend in the management of hard-to-treat cancers by harnessing the power of the immune system to eradicate the tumors. Yet, low response rate and resistance were observed when immunotherapies were tested as monotherapy. This urged the need to develop combinatorial regimens of immunotherapy with other immune modulatory agents to enhance its therapeutic potential and help in reverting the resistance. Epigenetic modifiers such as histone deacetylase inhibitors (HDACIs) showed favorable effects on modulating the tumor microenvironment along with the host immune cells. This qualified HDACIs as an attractive candidate class to be tested in combination with immunotherapy. In this review we cover the ongoing clinical trials that investigate the safety and/or the efficacy of HDACI/immunotherapy combinations in solid tumors including skin cancer, prostate cancer, breast cancer, colorectal cancer, lung cancer and recapitulates areas for future research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Cappellacci L, Perinelli DR, Maggi F, et al. Recent progress in histone deacetylase inhibitors as anticancer agents. Curr Med Chem. 2020;27:2449–93.

    Article  CAS  PubMed  Google Scholar 

  2. Minucci S, Pelicci PG. Histone deacetylase inhibitors and the promise of epigenetic (and more) treatments for cancer. J Nat Rev Cancer. 2006;6:38–51.

    Article  CAS  Google Scholar 

  3. Suraweera A, O’Byrne KJ, Richard DJ. Combination therapy with histone deacetylase inhibitors (HDACi) for the treatment of cancer: achieving the full therapeutic potential of HDACi. Front Oncol. 2018;8:92.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Bolden JE, Peart MJ, Johnstone RW. Anticancer activities of histone deacetylase inhibitors. Nat Rev Drug Discov. 2006;5:769–84.

    Article  CAS  PubMed  Google Scholar 

  5. Krämer OH, Mahboobi S, Sellmer A. Drugging the HDAC6–HSP90 interplay in malignant cells. Trends Pharmacol Sci. 2014;35:501–9.

    Article  PubMed  Google Scholar 

  6. Lin HY, Chen CS, Lin SP, et al. Targeting histone deacetylase in cancer therapy. Med Res Rev. 2006;26:397–413.

    Article  CAS  PubMed  Google Scholar 

  7. Li Y, Shin D, Kwon SH. Histone deacetylase 6 plays a role as a distinct regulator of diverse cellular processes. FEBS J. 2013;280:775–93.

    CAS  PubMed  Google Scholar 

  8. Yang F, Zhao N, Ge D, Chen Y. Next-generation of selective histone deacetylase inhibitors. RSC Adv. 2019;9:19571–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Condorelli F, Gnemmi I, Vallario A, et al. Inhibitors of histone deacetylase (HDAC) restore the p53 pathway in neuroblastoma cells. Br J Pharmacol. 2008;153:657–68.

    Article  CAS  PubMed  Google Scholar 

  10. Borbone E, Berlingieri M, De Bellis F, et al. Histone deacetylase inhibitors induce thyroid cancer-specific apoptosis through proteasome-dependent inhibition of TRAIL degradation. Oncogene. 2010;29:105–16.

    Article  CAS  PubMed  Google Scholar 

  11. Garmpi A, Garmpis N, Damaskos C, et al. Histone deacetylase inhibitors as a new anticancer option: How far can we go with expectations? Delivery systems. J BUON. 2018;23:846–61.

    PubMed  Google Scholar 

  12. Ellis L, Hammers H, Pili R. Targeting tumor angiogenesis with histone deacetylase inhibitors. Cancer Lett. 2009;280:145–53.

    Article  CAS  PubMed  Google Scholar 

  13. El-Naggar AM, Somasekharan SP, Wang Y, et al. Class I HDAC inhibitors enhance YB-1 acetylation and oxidative stress to block sarcoma metastasis. EMBO Rep. 2019;20:e48375.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Nassar D, Blanpain C. Cancer stem cells: basic concepts and therapeutic implications. Annu Rev Pathol. 2016;11:47–76.

    Article  CAS  PubMed  Google Scholar 

  15. Kumar B, Yadav A, Lang JC, et al. Suberoylanilide hydroxamic acid (SAHA) reverses chemoresistance in head and neck cancer cells by targeting cancer stem cells via the downregulation of nanog. Genes cancer. 2015;6:169.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Jacobs JF, Punt CJ, Lesterhuis WJ, et al. Dendritic cell vaccination in combination with anti-CD25 monoclonal antibody treatment: a phase I/II study in metastatic melanoma patients. Clin Cancer Res. 2010;16:5067–78.

    Article  CAS  PubMed  Google Scholar 

  17. Arnould L, Gelly M, Penault-Llorca F, et al. Trastuzumab-based treatment of HER2-positive breast cancer: an antibody-dependent cellular cytotoxicity mechanism? Br J Cancer. 2006;94:259–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Yu AL, Gilman AL, Ozkaynak MF, et al. Anti-GD2 antibody with GM-CSF, interleukin-2, and isotretinoin for neuroblastoma. N Engl J Med. 2010;363:1324–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Brahmer JR, Pardoll DM. Immune checkpoint inhibitors: making immunotherapy a reality for the treatment of lung cancer. Cancer Immunol Res. 2013;1:85–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kalyan A, Kircher S, Shah H, et al. Updates on immunotherapy for colorectal cancer. J Gastrointest Oncol. 2018;9:160.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Huang W, Chen J-J, Xing R, Zeng Y-C. Combination therapy: Future directions of immunotherapy in small cell lung cancer. Transl Oncol. 2021;14:100889.

    Article  PubMed  Google Scholar 

  22. Iglesias P. Cancer immunotherapy-induced endocrinopathies: clinical behavior and therapeutic approach. Eur J Intern Med. 2018;47:6–13.

    Article  CAS  PubMed  Google Scholar 

  23. Kroesen M, Lindau D, Hoogerbrugge P, Adema G. Immunocombination therapy for high-risk neuroblastoma. Immunotherapy. 2012;4:163–74.

    Article  PubMed  Google Scholar 

  24. Kroesen M, Gielen P, Brok IC, et al. HDAC inhibitors and immunotherapy; a double edged sword? Oncotarget. 2014;5:6558.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Bode KA, Schroder K, Hume DA, et al. Histone deacetylase inhibitors decrease Toll-like receptor-mediated activation of proinflammatory gene expression by impairing transcription factor recruitment. Immunology. 2007;122:596–606.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Deng S, Hu Q, Zhang H, et al. HDAC3 inhibition upregulates PD-L1 expression in B-cell lymphomas and augments the efficacy of anti–PD-L1 therapy. Mol Cancer Ther. 2019;18:900–8.

    Article  CAS  PubMed  Google Scholar 

  27. Tiper IV, Webb TJ. Histone deacetylase inhibitors enhance CD1d-dependent NKT cell responses to lymphoma. Cancer Immunol Immunother. 2016;65:1411–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Bridle BW, Chen L, Lemay CG, et al. HDAC inhibition suppresses primary immune responses, enhances secondary immune responses, and abrogates autoimmunity during tumor immunotherapy. Mol Ther. 2013;21:887–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sznol M, Kluger HM, Callahan MK, et al. Survival, response duration, and activity by BRAF mutation (MT) status of nivolumab (NIVO, anti-PD-1, BMS-936558, ONO-4538) and ipilimumab (IPI) concurrent therapy in advanced melanoma (MEL). American Society of Clinical Oncology; 2014.

    Google Scholar 

  30. Barnhart C. Pembrolizumab: first in class for treatment of metastatic melanoma. J Adv Pract Oncol. 2015;6:234.

    PubMed  PubMed Central  Google Scholar 

  31. Kwiatkowska D, Kluska P, Reich A. Beyond PD-1 immunotherapy in malignant melanoma. Dermatol Ther. 2019;9:243–57.

    Article  Google Scholar 

  32. Bretz AC, Parnitzke U, Kronthaler K, et al. Domatinostat favors the immunotherapy response by modulating the tumor immune microenvironment (TIME). J Immunother Cancer. 2019;7:1–15.

    Article  Google Scholar 

  33. Bissonnette RP, Cesario RM, Goodenow B, et al. The epigenetic immunomodulator, HBI-8000, enhances the response and reverses resistance to checkpoint inhibitors. BMC Cancer. 2021;21:1–17.

    Article  Google Scholar 

  34. Jespersen H, Bagge RO, Ullenhag G, et al. Concomitant use of pembrolizumab and entinostat in adult patients with metastatic uveal melanoma (PEMDAC study): Protocol for a multicenter phase II open label study. BMC Cancer. 2019;19:1–7.

    Article  Google Scholar 

  35. Jespersen H, Bagge RO, Ullenhag G, et al. Phase II multicenter open label study of pembrolizumab and entinostat in adult patients with metastatic uveal melanoma (PEMDAC study). Ann Oncol. 2019;30:v907.

    Article  Google Scholar 

  36. Agarwala SS, Moschos SJ, Johnson ML, et al. Efficacy and safety of entinostat (ENT) and pembrolizumab (PEMBRO) in patients with melanoma progressing on or after a PD-1/L1 blocking antibody. American Society of Clinical Oncology; 2018.

    Book  Google Scholar 

  37. Hassel JC, Berking C, Schlaak M, et al. Results from the phase Ib of the SENSITIZE trial combining domatinostat with pembrolizumab in advanced melanoma patients refractory to prior checkpoint inhibitor therapy. Wolters Kluwer Health; 2021.

    Book  Google Scholar 

  38. Khushalani N, Brohl A, Markowitz J et al. Significant anti-tumor activity of HBI-8000, a class I histone deacetylase inhibitor (HDACi) in combination with nivolumab (NIVO) in anti-PD1 therapy-naïve advanced melanoma (TN-Mel). J Immunother Cancer. 2020;8(Suppl 3):A476.

    Google Scholar 

  39. Patra SK, Patra A, Dahiya R. Histone deacetylase and DNA methyltransferase in human prostate cancer. Biochem Biophys Res Commun. 2001;287:705–13.

    Article  CAS  PubMed  Google Scholar 

  40. Fu M, Rao M, Wang C, et al. Acetylation of androgen receptor enhances coactivator binding and promotes prostate cancer cell growth. MolCell Biol. 2003;23:8563–75.

    CAS  Google Scholar 

  41. Abbas A, Gupta S. The role of histone deacetylases in prostate cancer. Epigenetics. 2008;3:300–9.

    Article  PubMed  Google Scholar 

  42. Walton T, Li G, Seth R, et al. DNA demethylation and histone deacetylation inhibition co-operate to re-express estrogen receptor beta and induce apoptosis in prostate cancer cell-lines. Prostate. 2008;68:210–22.

    Article  CAS  PubMed  Google Scholar 

  43. Butler LM, Agus DB, Scher HI, et al. Suberoylanilide hydroxamic acid, an inhibitor of histone deacetylase, suppresses the growth of prostate cancer cells in vitro and in vivo. Can Res. 2000;60:5165–70.

    CAS  Google Scholar 

  44. Marrocco DL, Tilley WD, Bianco-Miotto T, et al. Suberoylanilide hydroxamic acid (vorinostat) represses androgen receptor expression and acts synergistically with an androgen receptor antagonist to inhibit prostate cancer cell proliferation. Mol Cancer Ther. 2007;6:51–60.

    Article  CAS  PubMed  Google Scholar 

  45. Gameiro SR, Malamas AS, Tsang KY, et al. Inhibitors of histone deacetylase 1 reverse the immune evasion phenotype to enhance T-cell mediated lysis of prostate and breast carcinoma cells. Oncotarget. 2016;7:7390–402.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Pili R, Quinn DI, Albany C, et al. Immunomodulation by HDAC inhibition: results from a phase Ib study with vorinostat and pembrolizumab in metastatic urothelial, renal, and prostate carcinoma patients. American Society of Clinical Oncology; 2019.

    Google Scholar 

  47. Klein SL, Flanagan KLJNRI. Sex differences in immune responses. Nat Rev Immunol. 2016;16:626.

    Article  CAS  PubMed  Google Scholar 

  48. Ben-Batalla I, Vargas-Delgado ME, Von Amsberg G, et al. Influence of androgens on immunity to self and foreign: effects on immunity and cancer. Front Immunol. 2020;11:1184.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Scher HI, Fizazi K, Saad F, et al. Increased survival with enzalutamide in prostate cancer after chemotherapy. N Engl J Med. 2012;367:1187–97.

    Article  CAS  PubMed  Google Scholar 

  50. Shen L, Pili R. Class I histone deacetylase inhibition is a novel mechanism to target regulatory T cells in immunotherapy. Oncoimmunology. 2012;1:948–50.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Lin J, Elkon JM, Ricart B, et al. Phase I study of entinostat in combination with enzalutamide for treatment of patients with castration-resistant prostate cancer. American Society of Clinical Oncology; 2021.

    Google Scholar 

  52. Hamam R, Ali AM, Alsaleh KA, et al. microRNA expression profiling on individual breast cancer patients identifies novel panel of circulating microRNA for early detection. Sci Rep. 2016;6:1–8.

    Article  Google Scholar 

  53. O’Connor O. Clinical experience with the novel histone deacetylase inhibitor vorinostat (suberoylanilide hydroxamic acid) in patients with relapsed lymphoma. Br J Cancer. 2006;95:S7–12.

    Article  CAS  PubMed Central  Google Scholar 

  54. Richon V, Webb Y, Merger R, et al. Second generation hybrid polar compounds are potent inducers of transformed cell differentiation. Proc Natl Acad Sci. 1996;93:5705–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Huang L, Pardee ABJMM. Suberoylanilide hydroxamic acid as a potential therapeutic agent for human breast cancer treatment. Mol Med. 2000;6:849–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Munster PN, Troso-Sandoval T, Rosen N, et al. The histone deacetylase inhibitor suberoylanilide hydroxamic acid induces differentiation of human breast cancer cells. Can Res. 2001;61:8492–7.

    CAS  Google Scholar 

  57. Clinicaltrials.gov. Reversing Therapy Resistance with Epigenetic-Immune Modification (Pembrolizumab, Vorinostat, Tamoxifen). 2016. https://clinicaltrials.gov/ct2/show/NCT02395627: Accessed 15 Jan 2022.

  58. Nolan E, Savas P, Policheni AN et al. Combined immune checkpoint blockade as a therapeutic strategy for BRCA1-mutated breast cancer. Sci Transl Med. 2017;9(393):eaal4922. 

    Article  PubMed  PubMed Central  Google Scholar 

  59. Clinicaltrials.gov. Entinostat, nivolumab, and ipilimumab in treating patients with solid tumors that are metastatic or cannot be removed by surgery or locally advanced or metastatic HER2-negative breast cancer. In: 2015; last accessed January 2022.

  60. Basile D, Pelizzari G, Vitale MG, et al. Atezolizumab for the treatment of breast cancer. Expert Opin Biol Ther. 2018;18:595–603.

    Article  CAS  PubMed  Google Scholar 

  61. Varella L, Abraham J, Kruse M. Revisiting the role of bevacizumab in the treatment of breast cancer. Semin Oncol. 2017;44(4):273–285. 

    Article  CAS  PubMed  Google Scholar 

  62. Geindreau M, Ghiringhelli F, Bruchard M. Vascular Endothelial Growth Factor, a Key Modulator of the Anti-Tumor Immune Response. Int J Mol Sci. 2021;22(9):4871.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Arvind K, Mayur P, Vaibhav R, Arun MK. Impact of ado-trastuzumab emtansine therapy in human epidermal growth factor receptor 2 positive metastatic breast cancer: a recent survey. Asian J Pharm. 2016;10:S444.

    CAS  Google Scholar 

  64. Blaszczak W, Liu G, Zhu H et al. Immune modulation underpins the anti‐cancer activity of HDAC inhibitors. Mol Oncol. 2021;15(12):3280–3298.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Shen L, Ciesielski M, Ramakrishnan S, et al. Class I histone deacetylase inhibitor entinostat suppresses regulatory T cells and enhances immunotherapies in renal and prostate cancer models. PLoS ONE. 2012;7:e30815.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Kato Y, Yoshimura K, Shin T, et al. Synergistic in vivo antitumor effect of the histone deacetylase inhibitor MS-275 in combination with interleukin 2 in a murine model of renal cell carcinoma. Clin Cancer Res. 2007;13:4538–46.

    Article  CAS  PubMed  Google Scholar 

  67. Blaszczak W, Liu G, Zhu H, et al. Immune modulation underpins the anti-cancer activity of HDAC inhibitors. Mol Oncol. 2021;15:3280–98.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Beier UH, Akimova T, Liu Y, et al. Histone/protein deacetylases control Foxp3 expression and the heat shock response of T-regulatory cells. Curr Opin Immunol. 2011;23:670–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Wang L, Beier U, Akimova T, et al. Histone/protein deacetylase inhibitor therapy for enhancement of Foxp3+ T-regulatory cell function posttransplantation. Am J Transplant. 2018;18:1596–603.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Coral S, Sigalotti L, Colizzi F, et al. Phenotypic and functional changes of human melanoma xenografts induced by DNA hypomethylation: immunotherapeutic implications. J Cell Physiol. 2006;207:58–66.

    Article  CAS  PubMed  Google Scholar 

  71. Adair SJ, Hogan KT. Treatment of ovarian cancer cell lines with 5-aza-2′-deoxycytidine upregulates the expression of cancer-testis antigens and class I major histocompatibility complex-encoded molecules. Cancer Immunol Immunother. 2009;58:589–601.

    Article  CAS  PubMed  Google Scholar 

  72. Bao L, Dunham K, Lucas K. MAGE-A1, MAGE-A3, and NY-ESO-1 can be upregulated on neuroblastoma cells to facilitate cytotoxic T lymphocyte-mediated tumor cell killing. Cancer Immunol Immunother. 2011;60:1299.

    Article  CAS  PubMed  Google Scholar 

  73. Krishnadas DK, Bao L, Bai F, et al. Decitabine facilitates immune recognition of sarcoma cells by upregulating CT antigens, MHC molecules, and ICAM-1. Tumor Biology. 2014;35:5753–62.

    Article  CAS  PubMed  Google Scholar 

  74. Azad NS, Shirai K, Mcree AJ, et al. ENCORE 601: a phase 2 study of entinostat in combination with pembrolizumab in patients with microsatellite stable metastatic colorectal cancer. J Clin Oncol. 2018;36:3557.

    Article  Google Scholar 

  75. Murphy AG, Walker R, Lutz ER, et al. Epigenetic priming prior to pembrolizumab in mismatch repair-proficient advanced colorectal cancer. American Society of Clinical Oncology; 2019.

    Book  Google Scholar 

  76. Andre T, Lonardi S, Wong M et al. Nivolumab+ ipilimumab combination in patients with DNA mismatch repair-deficient/microsatellite instability-high metastatic colorectal cancer: first report of the full cohort from CheckMate-142. J Clin Oncol. 2018;36(4):553–553.

    Article  Google Scholar 

  77. Saunders MP, Graham J, Cunningham D, et al. A phase Ib/II trial to assess the safety and efficacy of CXD101 in combination with the PD-1 inhibitor nivolumab in patients with metastatic, previously-treated, microsatellite-stable (MSS) colorectal carcinoma (short title CAROSELL). Ann Oncol. 2019;30:v250.

    Article  Google Scholar 

  78. Connolly RM, Li H, Jankowitz RC, et al. Combination epigenetic therapy in advanced breast cancer with 5-azacitidine and entinostat: a phase II National Cancer Institute/Stand Up to Cancer Study. Clin Cancer Res. 2017;23:2691–701.

    Article  CAS  PubMed  Google Scholar 

  79. Weintraub K. Take two: combining immunotherapy with epigehetic drugs to tackle cancer. Nat Med. 2016;22:8–11.

    Article  CAS  PubMed  Google Scholar 

  80. Beg AA, Gray JE. HDAC inhibitors with PD-1 blockade: a promising strategy for treatment of multiple cancer types? Epigenomics. 2016;8:1015–7.

    Article  CAS  PubMed  Google Scholar 

  81. West AC, Johnstone RW. New and emerging HDAC inhibitors for cancer treatment. J Clin Investig. 2014;124:30–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Hashimoto A, Fukumoto T, Zhang R, Gabrilovich D. Selective targeting of different populations of myeloid-derived suppressor cells by histone deacetylase inhibitors. Cancer Immunol Immunother. 2020;69:1929–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Gray JE, Saltos A, Tanvetyanon T, et al. Phase I/Ib study of pembrolizumab plus vorinostat in advanced/metastatic Non–small cell lung cancer. Clin Cancer Res. 2019;25:6623–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Terranova-Barberio M, Thomas S, Ali N, et al. HDAC inhibition potentiates immunotherapy in triple negative breast cancer. Oncotarget. 2017;8:114156.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Barberio MT, Thomas S, Ali N, et al. Abstract B10: HDAC inhibition modulates immune checkpoint pathway in triple-negative breast cancer. American Association for Cancer Research; 2018.

    Google Scholar 

Download references

Acknowledgements

MFT is supported by L’Oreal-UNESCO for Women in Science award and the 5th Edition Science by Women Fellowship through Mujeres por Africa Foundation. Gratitude is extended to the African Academy of Sciences (AAS) for supporting MFT through the affiliates’ program (2019-2023).

Author information

Authors and Affiliations

Authors

Contributions

MFT contributed the work idea and the article structure; NKS drafting the manuscript and combining the different sections and table; MFT and NKS supervision of the work; AAH, SE, AA, MA drafting parts of the manuscript and helped in the table; MA contributed the abstract and figure design; MA and MFT contributed the conclusion section. NKS, MA and MFT revised and finalized the manuscript.

Corresponding author

Correspondence to Mai F. Tolba.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Research involving human participants and/or animals

Not applicable.

Informed consent

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sedky, N.K., Hamdan, A.A., Emad, S. et al. Insights into the therapeutic potential of histone deacetylase inhibitor/immunotherapy combination regimens in solid tumors. Clin Transl Oncol 24, 1262–1273 (2022). https://doi.org/10.1007/s12094-022-02779-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12094-022-02779-x

Keywords

Navigation